
RLTE: Reinforcement Learning for

Traffic-Engineering

Erik Einhorn and Andreas Mitschele-Thiel

Technical University Ilmenau,
Integrated Hardware and Software Systems Group,

98684 Ilmenau, Germany
{erik.einhorn,mitsch}@tu-ilmenau.de

Abstract. Quality of service (QoS) is gaining more and more impor-
tance in today’s networks. We present a fully decentralized and self-
organizing approach for QoS routing and Traffic Engineering in connec-
tion oriented networks, e.g. MPLS networks. Based on reinforcement
learning the algorithm learns the optimal routing policy for incoming
connection requests while minimizing the blocking probability. In con-
trast to other approaches our method does not rely on predefined paths
or LSPs and is able to optimize the network utilization in the pres-
ence of multiple QoS restrictions like bandwidth and delay. Moreover,
no additional signaling overhead is required. Using an adaptive neural
vector quantization technique for clustering the state space a consider-
able speed-up of learning the routing policy can be achieved. In different
experiments we are able to show that our approach performs better than
classical approaches like Widest Shortest Path routing (WSP).

1 Introduction

N
etwork traffic has become very versatile within the last few years. Each
network application makes different demands on the underlying network

infrastructure. Streaming Video on Demand (VoD) for instance requires a high
bandwidth while for Voice over IP (VoIP) a small delay is more important. The
ability to guarantee certain network parameters like bandwidth, delay, jitter, loss
or availability usually is referred to as Quality of Service (QoS). However, most
networks are still IP-based. Since IP is a connectionless protocol, IP packets do
not use specific paths between two communicating endpoints. This results in
unpredictable QoS in a best-effort network. In contrast, the connection oriented
Multiprotocol Label Switching (MPLS) standard [1] allows a better control for
traffic routing and Traffic Engineering [2]. Traffic Engineering decides how to
map the traffic requirements to the physical network in order to optimize the
whole network resource utilization [3].

However, the problem of optimal routing in the presence of multiple inde-
pendent QoS requirements is known to be NP-hard [4]. Therefore, heuristic or
approximation algorithms are applied to solve this problem. The most often used
algorithm for routing LSPs is the Min-Hop-Algorithm [5]. From all possible paths

between a source and a destination of a connection that fulfill the desired QoS
constraints, the one with the least number of links is chosen. This behavior
often results in bottlenecks and consequently connection requests are rejected
although other parts of the network still have enough resources available. The
widest-shortest path routing (WSP) [6] tries to solve this problem by choosing
the path with the largest residual bandwidth from all possible paths for a con-
nection. Thus, it avoids the usage of heavily loaded links. One major drawback
of this approach is the necessity for each node to have global knowledge about
the current load situation of the network. It therefore imposes an additional sig-
naling and information flooding overhead on the network. A more sophisticated
technique is used for the Minimum Interference Routing Algorithms MIRA [4],
LMIR [7] and DORA [8]. The main idea of these approaches is to route an in-
coming connection along a path that least interferes with other routes that may
be crucial to satisfy possible future requests. For this purpose, MIRA manages a
list of critical links and tries to preserve these links as long as alternative paths
are available. As a consequence, some links will remain underutilized leading to
a suboptimal usage of the network resources. Similar to WSP these approaches
also require global knowledge about the network state and therefore increase the
additional signaling overhead.

Apart from the aforementioned “classical” routing approaches a couple of al-
ternative methods have been researched recently. Some of them use Ant Colony
Optimization (ACO) for QoS routing in MPLS networks [9]. Other researchers
have studied how reinforcement learning can be used to solve routing prob-
lems. In contrast to the classical routing protocols based on heuristics, where
the routing decision is explicitly specified within the routing algorithm, rout-
ing approaches based on reinforcement learning are able to learn the routing
on their own depending on a feedback given by the network. At first reinforce-
ment learning was used for routing in IP networks. Boyan and Littman [10]
use Q-Learning to learn an optimal routing policy that minimizes the delay for
packet transmissions. In [11] the optimal policy is obtained using policy search
via gradient ascent. In both publications the authors are able to show that
their approach performs better than shortest path routing. In [3] a “Distributed
Adaptive Path Selection Scheme” for MPLS networks (MAPS) is presented. This
method uses reinforcement learning agents located at the networks edge routers.
In comparison with Widest Shortest Path (WSP) MAPS significantly reduces
the blocking probability without having global knowledge about the core net-
work and hence without additional signaling traffic. However, the approach only
focuses on the selection of predefined paths. Feasible paths must be established
using a k-shortest path algorithm beforehand [3]. Therefore, the approach can
not dynamically react to changes in the network topology or link failures. The
same disadvantage applies for an approach that is described in [12] and that
uses reinforcement learning to obtain a set of load-sharing factors for optimal
load-sharing among different LSPs in MPLS networks.

In this paper we present a novel QoS routing algorithm based on reinforce-
ment learning which can be used in MPLS networks or other connection oriented

networks that support QoS. In contrast to the approaches mentioned above our
algorithm does not rely on predefined paths. Instead it learns feasible paths
depending on the connection requests while minimizing the blocking probabil-
ity. Our approach is distributed and does neither need any global knowledge
about the network topology nor the current load situation of the whole network,
instead local information is sufficient. Moreover, it does not only consider the
bandwidth as one QoS parameter as most of the above approaches do, instead
it also takes delay restrictions into account. Furthermore, our approach should
attain the following goals that we consider important:

1. Compared to heuristic routing approaches like WSP that rely on global
knowledge about the network, the approach should at least achieve a similar
performance although it uses local information only.

2. The learning time - a major drawback of reinforcement learning approaches
- must be reduced to a minimum and should scale well if the network size
increases.

3. The approach must be able to react dynamically on changes in the network
topology such as link and node failures.

The organization of this paper is as follows. In the next sections the QoS routing
problem is defined. Thereafter our algorithm is described in detail and we present
techniques to achieve the goals mentioned above. In section 4 we present the
results of different simulations and experiments before we conclude the paper
with a summary.

2 Problem Definition

We consider a network described by the quadruple G = (N, L, B, D) consist-
ing of a set of n nodes (routers) N = {1, . . . , n} and a set of m links (arcs)
L = {1, . . . , m}. Furthermore, the functions B : L 7→ R and D : L 7→ R assign
a certain bandwidth B(l) and some delay D(l) to each link l ∈ L. In contrast to
other approaches, neither bandwidth nor delay need to be integers. Furthermore,
it is not necessary to distinguish between ingress, egress and core routers. In our
approach each node n ∈ N actually can be sending or receiving node. However,
if the algorithm is used in MPLS networks, the differentiation between core and
edge routers will be induced by the MPLS network.

Let R = (r0, . . . , ri, . . .) be the (generally infinite) sequence of connection
requests that arrive at the network, where each connection request or call ci =
(d, β, δ) sent from some source node s ∈ N specifies the address of the destination
node d ∈ N a bandwidth demand β ∈ R and a maximum delay restriction δ ∈ R

for the desired connection. Since we do not rely on predefined paths or LSPs,
the QoS routing algorithm has to find an appropriate path p = (l1, l2, . . . , lk)
of adjacent links that connects the ingress-egress pair (s, d) and that fulfills the
desired QoS requirements, namely:

1. the required bandwidth demand:

k

min
i=1

B̌(li) ≥ β

2. the maximal delay constraint:

k
∑

i=1

D(li) ≤ δ

where B̌(li) denotes the residual bandwidth that is available for link li. If the
path does not satisfy these constraints, the connection request is blocked and re-
jected. Otherwise the connection can be established and the required bandwidth
is reserved. The resources remain reserved until the connection is released.

The concern of an optimal QoS routing approach now is to find an optimal
routing policy that maximizes the number of accepted requests or in other words
minimizes the blocking probability of the connection requests.

3 Reinforcement Learning for Traffic Engineering

Our reinforcement learning approach for finding such a routing policy is based
on the SARSA-Learning algorithm [13], a variant of Q-Learning. Since SARSA-
Learning and Q-Learning are quite common techniques for reinforcement learn-
ing they will not be described in detail here. Further information can be found
in [13, 14] and [15].

Reinforcement learning (RL) is one type of Machine Learning, where a RL-
agent learns how to map situations (states) to actions to maximize a numerical
reward signal [15]. This mapping of states S to actions A is called policy π :
S 7→ A. In SARSA- and Q-Learning the policy can be determined by learning
an action-value function Q : S×A 7→ R. This function gives the expected reward
Q(st, at) for starting in state st ∈ S, taking action at ∈ A and then following
policy π thereafter. For choosing action at in state st the RL-agent receives a
reward rt and attains to state st+1 where it again selects some action at+1. The
SARSA-Learning rule will then update the Q-values as follows [15]:

Q(st, at)← (1 − β)Q(st, at) + β
[

rt + γQ(st+1, at+1)
]

(1)

where the β notates the learning rate and γ the so-called discount rate.
For selecting an action the softmax action selection can be used. It is based

on the Boltzmann distribution and chooses a certain action a ∈ A in state s with
the following probability:

P (a) =
exp

(

Q(s,a)
T

)

∑

b∈A exp
(

Q(s,b)
T

) (2)

where the parameter T is called the temperature. High temperatures cause the
actions to be all (nearly) equi-probable [15]. For low temperatures the softmax
action selection converges to a greedy action selection that chooses the action
with the highest Q-value. In our experiments a temperature between 0.1 and
0.25 gives the best results.

Overview

In our approach we use one RL-agent A that is distributed over the network.
Each node (router) i ∈ N of the network contains one part Ai of the RL-agent
that is responsible for learning just one part πi : Si 7→ Ai of the whole policy
π. Without loss of generality we assume that adjacent links for each node i are
renumbered in ascending order from 1 to mi. Moreover, we assume that the
partial agent Ai at each node is able to measure the residual bandwidth B̌(j)
and the delay D(j) of each adjacent link j ∈ (1, . . . , mi).

For signaling the connection requests and for establishing the paths we use
a simple protocol similar to RSVP-TE [16]. The protocol uses a few messages
only, that are described afterwards. For each incoming connection request a
PathResv-message is sent hop-by-hop to the destination node. Analogous to [10]
the partial RL-agent Ai at each node i ∈ N has to select one of its outgoing
links for forwarding the PathResv-message to the next hop (see Fig. 1a). If the
PathResv-message successfully arrives at its targeted node, a ResvAcc-message
is sent back to the sender of the connection request. This ResvAcc-message
takes the reverse path as the corresponding PathResv-message and reserves the
required resources for the connection. Additionally, this ResvAcc-message con-
tains a positive reward, that reinforces the action each partial agent has selected
(see Fig. 1b). If one of the demanded QoS parameters could not be satisfied at
some chosen link, a ResvReject-message is sent back to the sender taking the
reverse path of the PathResv-message. In contrast to the ResvAcc-message the
ResvReject-message contains a negative reward. By including the reward into
the necessary signaling messages any additional signaling overhead is avoided.

In a real world implementation the reward can be easily included as additional
object into the signaling messages of the RSVP-TE protocol.

Detailed Algorithm

As stated above, for each incoming PathResv-message containing a connection
request ct = (d, β, δ) the agent Ai chooses one of its outgoing links as action
at ∈ Ai using the softmax action selection. Since the links are numbered in as-
cending order, the discrete action space can be described by Ai = {1, . . . , mi}.
The action selection depends on the current state of the agent, which is deter-
mined by taking the destination address d, the bandwidth requirement β and
the delay restriction δ of the connection request ct = (d, β, δ) into account. Ad-
ditionally, the residual bandwidths B̌(1), . . . , B̌(mi) of all of adjacent links are
measured. Using this information a state vector st ∈ Si is formed:

st =
(

d, β, δ, B̌(1), . . . , B̌(mi)
)⊤

(3)

Please note, that no global knowledge about the network state is required here
at all.

Each partial RL-agent keeps track of its chosen action and the state which
led to that action. This allows the agent to associate the correct state-action

pairs to the delayed reward that arrives later with the corresponding ResvAcc-
message or ResvReject-message. However, although the RL-agent attains a new
state with each arriving connection request, it does not need to maintain all of
these states. In practice the state and the chosen action can be recovered when
the ResvAcc-message or ResvReject-message returns to the agent and do not
need to be stored inside of each agent.

i

k

PathResv:
ct = (d, β, δ)

st =
(

d, β, δ, B̌(1), . . . , B̌(mi)
)⊤

at = j

PathResv:
ct+1 =

(

d, β, δ −D(j)
)

(st+1, at+1)

B̌(1)
...

B̌(mi)
B̌(j)

j

(a) PathResv-message

i

k

ResvAcc:
rt, Q(st+1, at+1)

(st, at)

(st+1, at+1)

j

(b) ResvAcc-message

Fig. 1. a: The PathResv-message containing the connection request ct is sent hop-by-
hop towards the destination node. Depending on the current state st each partial agent
selects one link as action at for forwarding the message. This will bring the distributed
agent into the state st+1. Each state is observed by only taking local information of the
concerning partial agent into account. b: The ResvAcc-message takes the reverse path
as the PathResv-message and carries the reinforcement rt and the Q-value Q(st+1, at+1)
of each subsequent node.

Corresponding to the selected action at the PathResv-message is forwarded
along the chosen link j to the next node k ∈ N and its partial agent Ak. Thereby,
the delay restriction δ of the PathResv-message is decreased by the delay D(j)
of the chosen link. The connection request that arrives at node k can then be
described by ct+1 =

(

d, β, δ −D(j)
)

. It will bring the distributed agent A into
a new state st+1 that is observed by the partial agent Ak according to equation
3 again using local information only. Once more an action at+1 is chosen for
forwarding the message (see Fig. 1a).

Using this forwarding mechanism the PathResv-message will finally arrive
at its destination node d. As described earlier a ResvAcc-message containing a
positive reward r will be sent back to the sender taking the reverse path as the
corresponding PathResv-message.

The PathResv-message is also used by each partial agent to propagate its Q-
value Q(s, a) of the observed state s and the taken action a back to the previous
node on the path. Therefore, each partial agent that was involved in forwarding
the PathResv-message will receive a corresponding ResvAcc-message containing
a reward rt and the Q-value Q(st+1, at+1) of its subsequent node (see Fig. 1b).

Together with its own state st and its chosen action at each agent is able to
adapt its own Q-values Q(st, at) according to the SARSA-learning rule using
equation 1. The same mechanism is used for ResvReject-messages, that are
sent if one of the QoS restriction is not satisfied during the path selection. The
only difference is that ResvReject-messages contain a negative reward. If the
ResvReject-message finally arrives at the sending node it depends on the upper
layer protocols if the request is sent again or definitely rejected.

At the beginning all Q-values are initialized uniformly and each partial RL
agent begins its learning tabula rasa. Hence, for the first arising connection re-
quests the routing in the network will be random. After some time of exploration
and learning the agents will develop a feasible routing policy and perform better
with each new request. In section 4 we show that the required time for learning
is acceptable in comparison to classical routing approaches.

State Space Clustering

Most related RL-based algorithms for routing [3][10] use a table where the Q-
values of each state-action pair are stored. However, since our state space is
continuous we cannot use such a table based Q-Learning approach here. Addi-
tionally, as seen in equation 3 each state consists of 3 + m elements, where m

is the number of outgoing links. Hence, the dimension of the state space can
become very high depending on the valency of the nodes. This would lead to a
slow convergence while learning the optimal routing policy. Therefore, we have
to apply some kind of state space clustering.

Similar to [17] we use a variant of Growing Neural Gas (GNG) [18] as adaptive
neural vector quantization technique for optimal clustering of the continuous
state space. The neurons of the GNG store the Q-values for the actions of the
action space A and they are associated to reference vectors in the state space,
which can be regarded as positions of the corresponding neurons. Depending on
its position wn ∈ S each neuron n is responsible for a certain (voronoi) region
in the state space S.

To obtain the Q-value Q(s, a) for a given state-action pair (s, a) the best-
matching neuron of the GNG is chosen, i.e. the neuron whose reference vector wn

has the smallest Euclidean distance to the state s. Finally, the desired Q-value
stored in the best-matching neuron can be obtained as seen in Fig. 2.

Similar to [19] we insert new neurons if the distance between the best-
matching neuron and the state exceeds a certain threshold. While learning we
do not only adapt the Q-values of the best-matching neuron according to the
learning rule in equation 1 but also the Q-values of the topologically neighboring
neurons, since they represent similar states. Neurons close to the best-matching
neuron are adapted more (with a higher learning rate) than neurons in larger
distances. This method is elaborately described in [17] and increases the speed
of learning dramatically as shown in section 4.

In our approach each partial RL-agent at each node uses its own GNG to
cluster its state space. However, the destination address of the connection request
that is specified in each state is not yet included into the state space clustering.

sn

a1 . . . am

Q
(s

n
,
a

i
)

..
.

Q
(s

n
,a

m
)

s

wn

best-matching neuron

Fig. 2. The state space is clustered using a GNG (left). For obtaining a certain Q-value
Q(s, a) the best-matching neuron for the state s is chosen. It contains a table with the
corresponding Q-values for each action (right). The different colors indicate, that the
Q-values of neurons close to the state s are adapted more than the values of neurons
in larger distances during a learning step.

Hence, our next step will be to perform the clustering over the whole state space
comprising the destination addresses. To do so a topological addressing scheme
and an appropriate metric must be chosen. If two nodes in the network were
separated by one or a few hops only, the metric should yield a small distance for
the addresses of both nodes. If - on the other hand - both nodes were separated by
many hops, the metric should yield a big distance for the addresses. Geographic
addressing [20, 21] and the Euclidean distance e.g. satisfy these requirements but
do not support mobility. Therefore, we have to research other suitable addressing
schemes first.

Convergence of the Approach

It has been shown that Q-Learning will converge to an optimal policy if certain
conditions are met. One requirement is that the whole decision process must be
Markovian and fully observable. However, we apply SARSA-Learning although
we are dealing with a Markovian decision process that is only partial observable
(POMDP). Additionally, our state space is not discrete. Therefore, the conver-
gence to the optimal policy can not be guaranteed. Nevertheless, in section 4
we show that our approach at least converges to a routing policy that performs
better than classical approaches.

Analysis of the Runtime and Learning Complexity

One advantage of our reinforcement learning routing approach is that it is com-
putationally inexpensive and does not require extensive router hardware. The
whole algorithm is distributed over all routers of the network. For a connection
request each router merely has to look up some Q-values, select an action and
adapt the Q-values afterwards. The adaption according to the learning rule is
cheap. The look-up of the Q-values is more expensive since it includes finding the
best-matching neuron in the GNG which usually is done by a nearest neighbor

search. For a very high dimensional state space an approximate nearest neighbor

search based on locality sensitive hashing is suitable. Using this method a query
time of O(dNO(1)) [22] can be achieved, where N is the number of neurons in
the GNG and d = 3 + m is the dimension of the state space of a router with
m outgoing links as described earlier. Obviously, the runtime does neither de-
pend on the number of routers nor the amount of links, therefore the runtime
complexity of each routing decision is O(1) in terms of the network size.

Unfortunately, the biggest problem of reinforcement learning based approaches
is the required time for learning a feasible routing policy if they are applied to a
completely new network without any prior knowledge. As stated earlier the rout-
ing will be random during the bootstrapping at the beginning and many requests
will not reach their destination, which results in a high blocking rate. Depending
on the network layout the number of possible paths between a source-destination
pair that have to be learned by each RL-agent usually increases with the square
of the distance between both nodes. Therefore, the learning complexity and time
for bootstrapping increases according to O(r2) where r is the average number of
hops between all source-destination pairs. However, in practice the size of net-
works increases incrementally by adding few new nodes or links only and hence
the learning complexity will be smaller.

4 Results

We have implemented our QoS-routing approach and simulated the packet flow,
the routing and the resource reservation using a discrete event network simulator.
In our tests we have compared our RLTE approach to the often used Widest-
Shortest-Path routing (WSP). As mentioned in section 1 WSP chooses the path
with the largest residual bandwidth from all possible shortest paths between a
source and a destination. Additionally, WSP needs information about the current
load situation of the network. If a high refresh rate for updating this information
is chosen, WSP will perform better but imposes a larger signaling overhead and
vice versa. In the following results we have used different refresh intervals for
WSP.

Since bandwidth and delay are inherently guaranteed by the routing ap-
proach, the blocking probability, i.e. the ratio of blocked and requested connec-
tions within a certain period of time, remains the most important measure of the
routing performance. In the first test we have compared the blocking probability
of our approach with WSP. We have used the topology shown in Fig.3a. It
consists of three source nodes S1, . . . , S3 and two destination nodes D1, D2. The
bandwidth of the outgoing links of the source nodes is set to 100 in order to
avoid bottlenecks here. The bandwidth for the two links between the nodes 6, 7
and D2 is set to 20, the bandwidth of the remaining links is set to 10. The delay
of all links is 1. Each source node continuously sends connection requests to the
destination nodes. The connection requests are shown left to each source node.
S1 for example requests connections to node D1 with an allowed delay of 4 and a
randomly chosen bandwidth between 1 and 5. The arrival and the holding time
of new connections is exponentially distributed using an arrival rate of λ = 1

S1

S2

S3

D1

D2

1 2

4 5

6 7

3

100

10

20

(D1, 4, 1..5)

(D2, 3, 1..5)

(D2, 4, 5..10)

(a) topology for the first test

r

S

D1

D2D4r

......

(b) regular meshed topology

Fig. 3. Different topologies that were used in our experiments. The radius r of the
right topology can be changed to simulate different network sizes.

and an average holding time of µ = 1, i.e. on average each source node requests
one connection within one time unit and a duration of one time unit.

In Fig.4 our RLTE approach is compared to WSP. The blue graph marked
with +’s shows the blocking probability for RLTE with table based SARSA-
learning and the red graph marked with diamonds shows RLTE with state space
clustering using GNGs. In both cases the RL-agents start without any knowledge
about the network and cause high blocking rates at the beginning. It is obvious
that the clustering dramatically speeds up the learning and reduces the blocking
probability much faster. Hence, a smaller number of learning steps and therefore
less connection requests are necessary to achieve a certain blocking probability.
After 100 requests and learning steps our proposed RLTE(GNG) approach

performs better than WSP(1) with a refresh interval of 1 time unit (dashed
green graph). Remember that the average inter arrival time of new requests
also is 1 time unit, hence for WSP(1) the refreshs occur as often as connection
requests and would impose a lot of signaling overhead in practice. After 4000
learning steps our approach even performs better than WSP(∞) with an infinite
refresh rate, where each WSP router has access to the current global network
state at any time (solid green graph). Of course an infinite refresh rate for WSP is
not possible in practice. After 10000 requests we simulate a link failure between
node 6 and 7. Hence the connections must be rerouted. Right after the link
failure the blocking probability of our RLTE approach increases slightly more
than WSP(∞) but stays below WSP(1). A few requests later our approach has
adapted its routing policy and again performs better than WSP(∞). These tests
reveal that our approach can achieve the goals mentioned in the introduction to
this paper and performs better than WSP although it uses local information only.
Moreover in comparison to WSP the learning time of RLTE is not a problem.
100 request for bootstrapping are negligible and right after the link failure RLTE
still performs better than WSP(1).

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

number of requests

b
lo

ck
in

g
p
ro

b
a
b
il
it
y

+

+
+

+
+ + + + +

+

+ +
+ + + + + + +

l

l
l l

l l l l
l l

l
l l l l l l l l

l

link failure
RLTE (GNG)

RLTE (table)

WSP (1)

WSP (∞)

l

+

Fig. 4. Comparison of the blocking probability of our RLTE approach with WSP. State
space clustering using GNGs speeds up the learning and our approach even performs
better than WSP with an unlimited refresh rate. It is also able to handle link failures
autonomously.

To ascertain the impact of the network size on the required learning time
during the bootstrapping phase we use the meshed network topology shown in
Fig.3b. The radius r of the network graph can be varied in order to change
the number of nodes and links in the network. Both increase with the square
of the radius. At the center of the network we placed a source node S that
continuously sends connection requests to a randomly chosen destination node
Di at the periphery of the network. The bandwidth of all links is 10.0. It is
the advantage of the chosen network topology that all shortest paths between
the source node and the destination nodes have the same length r. Therefore,
at least r routing decisions have to be made in order to establish a connection
between the source S and one destination Di. For this network we use an arrival
rate of λ = 1 and an average holding time of µ = 2. As QoS parameters for each
connection the allowed delay is set to r + 2 to allow slightly longer paths than
the shortest ones and the required bandwidth is again chosen randomly between
1.0 and 5.0.

In Fig.5 the number of learning epochs and requests, that are needed to
achieve a blocking probability below a certain value, is plotted against the radius
of the network. As reference we use the blocking probability that WSP(1) and
WSP(10) with a refresh time of 1 and 10 respectively produce in the network
with the given size. The solid red graph for example shows, that after 200
learning epochs RLTE(GNG) starts to perform better than WSP with a refresh
time of 10 for a network with the radius r = 4. Again RLTE with state space
clustering outperforms its table based variant. As expected at the end of the
previous section the learning time increases with the square of the network size.
To reduce the learning complexity we have tried a different way for initializing

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8

network size (radius r)

n
u
m

b
er

o
f
re

q
u
es

ts
(l
ea

rn
in

g
ep

o
ch

s)

bc

bc bc

bc

bc

bc

bc

ld

ld

ld

ld

ld

ld

ld

b b b
b b b bl l

l
l

l

l
l

+

+

+
table based

RLTE(GNG)

∼ Dijkstra init

RLTE(GNG)

∼ Dijkstra init

+
l

b

ld

bc

relating to
WSP(10.0)

WSP(1.0)

Fig. 5. Influence of the network size on the necessary time for learning. The graphs
show the required learning epochs to achieve at least the same blocking probability as
WSP with an refresh interval of 1 (dashed lines) and 10 (solid lines). Again state space
clustering reduces the learning time (red graphs). Initialization of the Q-values using
the Dijkstra algorithm leads to a further reduction (green graphs).

the Q-values. Instead of initializing the RL-agents tabula rasa, we provide them
with rudimental information about the network topology. At the beginning of
each simulation we apply the Dijkstra algorithm to compute the distance to each
destination node and initialize the Q-values of each agent depending on these
distances. The two green graphs marked with circles show that this significantly
reduces the necessary time for learning.

5 Conclusion and Future Work

In this paper we have presented a novel distributed and self-organized QoS rout-
ing approach that is based on reinforcement learning. In contrast to other re-
inforcement learning approaches our algorithm combines optimal path planing
and path selection and does not depend on predefined paths.

We have shown that our approach performs better than WSP routing al-
though it uses local information only and therefore does not impose any addi-
tional signaling overhead. Since we use a constant learning rate to achieve life
long learning our algorithm is able to react to link failures. While learning an al-
ternative optimal routing policy a differentiation between local and global repair
is no longer necessary. For the first time we have applied state space clustering
in a routing approach based on reinforcement learning. We have shown that the
state space clustering dramatically reduces the necessary time for learning the
routing policy to an acceptable level. This is essential if reinforcement learning

approaches shall be used for routing in “real life” networks. Moreover, we have
shown that the time for learning can be reduced if the RL agents are initialized
using basic network knowledge obtained by applying the Dijkstra algorithm.

In the future the learning time can be further decreased if a topological
addressing scheme is used and the destination addresses are included in the
clustering as described in section 3. Then each agent will automatically cluster
the destination addresses and build its own optimal subnets. In contrast to most
other approaches our algorithm already takes two QoS constraints into account.
However, it can easily be extended to handle much more parameters just by
expanding the state vector. In addition to the continuous state space a contin-
uous action space can be used. This will allow the agents to learn an optimal
load sharing policy. Thus, routing approaches based on reinforcement learning
have a high potential and provide many more possibilities that are worth to be
investigated in future research.

References

1. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Label Switching Architec-
ture. IETF RFC 3031 (2001)

2. Evans, J., Filsfils, C.: Deploying IP and MPLS QoS for Multiservice Networks:
Theory and Practice. Morgan Kaufmann, ISBN 0-12-370549-5 (2007)

3. Liu, Y., Tham, C., Hui, T.: MAPS: A Localized and Distributed Adaptive Path
Selection Scheme in MPLS Networks. In: Proc. of IEEE Workshop on High Per-
formance Switching and Routing (HPSR). (2003)

4. Kodialam, M.S., Lakshman, T.V.: Minimum Interference Routing with Applica-
tions to MPLS Traffic Engineering. In: INFOCOM (2). (2000) 884–893

5. Awduche, D., Malcolm, J., Agogbua, J., ODell, M., Mcmanus, J.: Requirements
for Traffic Engineering Over MPLS. IETF RFC 2702 (1999)

6. Guerin, R., Williams, D., Orda, A.: QoS Routing Mechanisms and OSPF Exten-
sions. In: Proc. of Globecom. (1997)

7. Figueiredo, G., da Fonseca, N., J.A.S.Monteiro: A minimum interference routing
algorithm. In: Proc. of the IEEE Int. Conf. on Communications. Volume 4. (2004)

8. Boutaba, R., Szeto, W., Iraqi, Y.: DORA: Efficient Routing for MPLS Traffic En-
gineering. Journal of Network and Systems Management, Special Issue on Internet
Traffic Engineering and Management 10 (2002) 309–325

9. Carrillo, L., Marzo, J., Vil, P., Fbrega, L., Guadall, C.: A Quality of Service
Routing Scheme for Packet Switched Networks based on Ant Colony Behavior.
In: Proc. of the Int. Symposium on Performance Evaluation of Computer and
Telecommunication Systems. (2004) 637–641

10. Boyan, J.A., Littman, M.L.: Packet Routing in Dynamically Changing Networks: A
Reinforcement Learning Approach. In: Advances in Neural Information Processing
Systems. Volume 6., Morgan Kaufmann Publishers, Inc. (1994) 671–678

11. Peshkin, L., Savova, V.: Reinforcement learning for adaptive routing. In: Proc. of
the International Joint Conference on Neural Networks (IJCNN). (2002)

12. Heidari, F., Mannor, S., Mason, L.: Reinforcement learning-based load shared
sequential routing. In: Proc. of the IFIP Networking. (2007)

13. Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166, Cambridge University Engineering
Department (1994)

14. Watkins, C.: Learning from Delayed Rewards. PhD thesis, King’s College, Cam-
bridge University, UK. (1989)

15. Sutton, R., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)

16. Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., Swallow, G.: RSVP-TE:
Extensions to RSVP for LSP Tunnels. IETF RFC 3209 (2001)

17. Gross, H.M., V.Stephan, M.Krabbes: A Neural Field Approach to Topological
Reinforcement Learning in Continous Action Spaces. (In: Proc. 1998 IEEE World
Congress on Computational Intelligence WCCI’98) 1992–1997

18. Fritzke, B.: A Growing Neural Gas Network Learns Topologies. In Tesauro, G.,
Touretzky, D.S., Leen, T.K., eds.: Advances in Neural Information Processing Sys-
tems 7. MIT Press, Cambridge MA (1995) 625–632

19. Marsland, S., Shapiro, J., Nehmzow, U.: A self-organising network that grows
when required. Neural Networks 15 (2002) 1041–1058

20. Watteyne, T., Auge-Blum, I., Dohler, M., Barthel, D.: Geographic Forwarding in
Wireless Sensor Networks with Loose Position-Awareness. In: Personal, Indoor
and Mobile Radio Communications, PIMRC. (2007) 1–5

21. Navas, J.C., Imielinski, T.: GeoCast – Geographic Addressing and Routing. In:
Mobile Computing and Networking. (1997) 66–76

22. Andoni, A., Indyk, P.: Near-Optimal Hashing Algorithms for Approximate Nearest
Neighbor in High Dimensions. Foundations of Computer Science, 2006. FOCS ’06.
47th Annual IEEE Symposium on (2006) 459–468

