
A Theory of Closure Operators

Alva L. Couch and Marc Chiarini

Tufts University, Medford, Massachusetts, USA
alva.couch@cs.tufts.edu, marc.chiarini@tufts.edu

Abstract. We explore how fixed-point operators can be designed to
interact and be composed to form autonomic control mechanisms. We
depart from the idea that an operator is idempotent only for the states
that it assures, and define a more general concept in which acceptable
states are a superset of assurable states. This modified definition permits
operators to make arbitrary choices that are later changed by other op-
erators, easing their composition and allowing them to maintain aspects
of a configuration. The result is that operators can be used to implement
closures, which can in turn be used to build self-managing systems.

1 Introduction

Cfengine[1–5] is a widely used tool for managing computing systems. Cfengine’s
basic building block is the “convergent operator”, an operation that enforces a
policy by modifying any non-conforming system state. Operators affect a broad
range of system entities, including configuration and dynamic runtime state.
Convergent operators immunize a system against potential deterioration, by re-
peatedly repairing any state found to be non-conforming. They are also idem-
potent on properly conforming systems, in the sense that they will do nothing
unless nonconformity is discovered. Thus, each operator comprises a tiny auto-
nomic “control-loop” that checks for policy conformity and implements changes
if they are needed.

Primitive operators in the current Cfengine-II (and the upcoming Cfengine-
III[6]) are simple in structure. It is best to think of Cfengine as an “assembly
language” for building convergent operators. Statements in Cfengine’s policies
affect files, processes, and other entities in straightforward ways, and can be
composed to accomplish high-level tasks such as “implementing services”. These
statements are implemented by local agents running on each managed system.

This paper is about the “next level”. While Cfengine embodies Burgess’
theories, it does not implement Burgess’ more general theoretical definition of
convergent operators[7, 8]. In that definition, a convergent operator assures that
a system attribute has a value in some set of acceptable values, while most
Cfengine operators assure that a system attribute has one value.

The effect of this limitation is that it is difficult for Cfengine to collaborate
with other entities in assuring a goal1. Cfengine policies are centered around

1 As Q of Star Trek: the Next Generation would say, “I don’t work well in groups. It’s
difficult to work in groups when you’re omnipotent.”

creating some specific state, not an acceptable one. Thus, if some other entity
creates another acceptable state, Cfengine will often detect and revert that state
to the one and only state that it considers acceptable.

For example, suppose we set up a web server with Cfengine and then decide
to tune its performance (either manually, or via some other software mechanism).
Cfengine will – when invoked – revoke the changes we make to tune the server
according to its own definition of “health,” which is defined in terms of the
contents and positions of specific files. To make the tuning “permanent”, we
have to inform Cfengine itself about the changes we want, and let it enforce these
rules. This is an extra and potentially costly step if the changes are widespread.

In this paper, we ask the question, “how can convergent operators collab-
orate?” We explore collaboration as a composition of operators that does not
require the step of coding knowledge from one operator (e.g., tuning) into another
(e.g., setup). We define a new concept of operator that conforms to Burgess’ the-
oretical definition but is broader than Cfengine’s definition, and we explore the
effects of composing such operators. We seek a situation in which two operators
– one which sets up a web server and another that tunes it – can be composed
and efficiently collaborate without knowledge of one another. This includes the
human kind of operator as well. We explore a concept of convergent operator
that encodes intelligence without requiring rigid conformity to a policy, so that
the configuration agent becomes a “partner” rather than a controller. The de-
sirable end result of this work is an autonomic control model that involves a
partnership between humans and agents rather than a master-slave relationship
in either direction.

How does one construct a well-designed convergent operator for network man-
agement? So far, the Cfengine model provides the only answer to this question.
In this paper, we look beyond Cfengine’s capabilities to a more general definition
of convergent operators inspired by the theory of closures. All Cfengine operators
comply with this definition, but the definition allows new kinds of operators to
be created with desirable properties. Our conclusion is that this broader defini-
tion provides kinds of behavior that are otherwise difficult to describe or codify.
In particular, while one can translate a policy to an operator, the converse seems
intractable for some of the operators in this new class.

In the pages that follow, please keep in mind that fixed-point operators do
not abandon the autonomic computing mechanism of closed-loop control; in-
stead, they encapsulate control loops into smaller packages called operators. An
operator includes a precondition-checking step that decides what control to ap-
ply, followed by an implementation step that makes appropriate changes. This
can be viewed as a control loop operating inside the operator.

For example, consider two approaches to performance tuning of a web server,
one based upon fixed-point operators and one based upon traditional control
loops. The fixed-point version still contains a control loop, inside the operator,
which is implemented through multiple invocations of the operator. This includes
data collection, planning, and execution phases, but in the context of a single
operator, rather than in the context of managing a whole system.

2 Convergent and Closure Operators

All the ideas in this paper presume the existence of a set of convergent operators
O operating on a system that possesses a set of potential states S.

Definition 1. A convergent operator O over a set of potential states S (that can
be present in a network) is a function from S to S that, when applied repeatedly,
eventually assures that a subset Sa of assurable states of S is present in the
network, where O is idempotent over Sa, i.e., for s ∈ Sa, O(s) = s.

In other words, there exists some k > 0 such that for n > k and any state s ∈ S,
On(s) ∈ Sa, or, equivalently, On(S) = Sa (and O(Sa) = Sa).

This is fairly close to the Cfengine definition of a convergent operator, but is
more limited than Burgess’ general definition of convergence, in which k might be
infinite. Also, note that the existence of k in a static environment does not assume
that there is a k for an environment that is dynamically changing, perhaps in
opposition to the goals of the operator. For example, an operator that seeks to
limit the number of user processes would never converge if a user attempted
consciously to circumvent the operator by creating a steady supply of processes.

We broaden this definition in one fundamental way, inspired by the theory
of closures, to admit a new kind of idempotence. A closure[9–11] is a domain
of semantic predictability in a larger system that may exhibit unpredictability
in other ways. Creating a closure requires separating behavior from configura-
tion, so that configuration data can be classed as either crucial to behavior or
incidental. An incidental configuration parameter’s value does not affect behav-
ior, while a crucial parameter changes observable behavior. This classification
of parameters determines which configuration parameters should be part of the
interface to the closure, and which should be internal and unexposed.

In particular, the first definition does not account for the fact that an oper-
ator may accept (that is, be idempotent over) more states than it assures. The
assurable states of an operator are those that it has the power to create, while
the acceptable states of an operator are those that it finds acceptable, but might
not be able to create itself. More formally,

Definition 2. A closure operator O over a set S is defined by two sets of states,
Sa ⊆ Si ⊆ S, so that O is idempotent over S i but assures a perhaps smaller
subset Sa.

For most Cfengine operators, S i = Sa, though there are some advanced operators
(e.g., file editing) for which S i is a proper superset of Sa.

The fact that assurance is different than acceptance is a core idea in the
theory of closures. Many states are “acceptable” simply because they embody
arbitrary (or “incidental”) choices that do not affect the outcome of the goal.
Other choices might be crucial.

For example, the actual location of the web server document tree has little
to do with the basic behavior of a web server, so an operator O1 that sets up
a web server might well make an arbitrary choice[10] about those details. But
one operator’s “arbitrary” might be another operator’s “crucial”; consider an

operator O2 whose goal is to tune the performance of the web server. Then the
choice of document root – unimportant to the basic act of setting up the web
server – changes from incidental to crucial and is no longer so flexible. However,
the first operator O1 does not care about the location, so it should not override
the operator O2’s changes to its original design.

The difference between what an operator accepts and what it assures can
lead to fixed points that are not readily apparent. If O1 assures that the web
service is located on the mounted filesystem, but accepts that it could be located
anywhere, then the set of operators {O1, O2} has a fixed point. If O1 does not
accept anything except what it assures, then operators in the set share no fixed
point and are not consistent. These two situations are described in Fig. 1. In one
case, O1 accepts states set up by O2; in the other, it does not.

Fig. 1. (a) O1 accepts some subset of states that are assurable by O2. (b) O1 only
accepts the states that it assures.

Thus, the concept of incidental complexity in closures – conceived within a
theory based upon syntactic consistency – is reflected in the theory of operators
as an acceptance set that allows greater flexibility for incidental choices than
those in an assurance set. A third operator O3 might set up and assure the
operation of a particular virtual server, without conflicting with O1 or O2.

3 Strategy and Tactics

One way of understanding this new distinction is that the acceptance set reflects
a general strategy for accomplishing an aim or goal, while the assurance set re-
flects specific tactics for achieving that goal. A strategy is declarative knowledge,
in the sense that it is about describing acceptable states, while a tactic represents
procedural knowledge about how to achieve one or more assurable states.

In the above example, the strategy of O1 is to “create a working web server,”
while the strategy of O2 is to “create a fast web server.” O1 has a tactic for
creating at least one version of a “working web server” in which it makes a

number of choices that might be incidental to the web server’s function. To
O2, though, some choices (e.g., the locations of particular content) are no longer
incidental, because O2’s strategy differs from O1’s strategy. However, a “fast web
server” is indeed some subclass of a “working web server”, so there is strategy
overlap between O1 and O2. O1 and O2 can “collaborate” if O2’s tactic for
creating a “fast web server” is also consonant with O1’s definition of a “working
web server.” In this case, we can compose O1 and O2 to get “a working and fast
web server”.

The concept of closure operators may seem abstract and unrealistic at first
glance, but it is a more direct mimicry of what humans do in administering sys-
tems than the actions performed by current configuration tools. We break down
installation of a service into multiple steps, each of which requires prerequisites.
We tune each step separately, making sure we do not break the function of any
prior step. One person might set up a web server, another might populate its
content, and a third might tune it. This is exactly what a set of closure opera-
tors are meant to do, and one might thus characterize closure operators as “what
humans do” to create and then continue to assure a functioning system.

The Cfengine way to construct O1 and O2 is to employ assurance sets that
equal their acceptance sets. In that case, O1 must embody all of the complexity
of O2, or the operators are inconsistent. If, instead, we can determine a method
that allows O2 to embrace what O1 has done, without understanding it, and for
O1 to embrace what O2 will do, then we can compose O1 and O2 into a whole
greater than the sum of its parts.

4 Operator Consistency

One important question for a set of convergent operators (each of which has a
set of fixed points) is whether the set shares a fixed point or not.

Definition 3. A set of convergent operators O is consistent if the set shares a
set of fixed points F that is a subset of all states S in the domain of the set of
operators.

Note that this is a set intersection problem: the set of fixed points F for a set of
operators O, if it exists, is the intersection of the sets of fixed points A = {Ai}
that each individual operator Oi assures. O is consistent exactly when A is
non-empty2.

The above definition applies to operators with preconditions in a perhaps
unexpected way. Such an operator does nothing until its preconditions are met.
For example, one cannot tune a web server (O2) until it has been installed (O1).
Thus O2 is idempotent both when its preconditions are not met and after its
acceptable states have been achieved.

Definition 4. Operators with preconditions are consistent only if they exhibit a
fixed point after all operator preconditions have been met.

2 Extended notions of consistency are explored in [16]

In other words, the trivial fixed point for operators that have not become active
does not count as a fixed point for the set of operators.

It is often important to know whether consistency is a concrete or abstract
property of a set of operators. It is only concrete if it can actually arise in
practice:

Definition 5. A set of operators O is reachably consistent (with respect to a
set of baseline states B) if they are consistent, and for any state b ∈ B of the
network before the operators, there is some sequence of operator applications that
leads to a consistent state.

We denote the reachable states for a set of operators O with respect to a set of
baseline (initial) states B as O∗(B).

Reachable consistency of closure operators is not a simple set intersection
problem unless the acceptance and assurance sets for operators are equal; there
are sets of closure operators that are consistent but not reachably consistent,
because reachability requires some outside force to be applied. Consider the case
where O1 and O2 share an acceptable point that is not reachable. For example
suppose that O1 can locate the web server in /usr/web, O2 can locate the web
server anywhere in /opt, and some third operator O3 can put the web server
in /var/www, which is acceptable to both of the others. The set {O1, O2} is
consistent but not reachably consistent, because the common acceptable state
/var/www cannot be reached by virtue of the knowledge contained in O1 or
O2. The set {O1, O2, O3} is reachably consistent (with respect to the set of all
states S) because an assurable state of O3 can satisfy at least one acceptable
state of both O1 and O2. Thus a set that is not reachably consistent can be
made reachably consistent by adding operators, a fact that is on the surface
quite counter-intuitive and that cannot happen if assurable and acceptable states
happen to match (Figure 2).

Fig. 2. Operators O1 and O2 can never reach a fixed point without O3, which joins
their acceptable states with a common assurable state. An ’i’ (idempotent) superscript
denotes an operator’s set of acceptable states, while an ’a’ denotes its assurance set.

Reachable consistency depends upon the possible initial states B of a system
before operators are applied. This is a rather trivial assertion in the sense that

if the baseline states are fixed points of all operators, then the set of operators
is consistent even though they might not be able to assure that particular state
themselves. If, for example, the set of operators never moves the system outside a
baseline state, then for all practical purposes, the set of all states is the baseline
set.

In the above example, the result of the three operators is an emergent fixed
point that is fixed for all three operators, but fixed in different ways for each
operator. Thus each operator can be thought of as acting on an aspect of the
network, and the composition of operators into a set can be viewed as similar to
aspect composition as defined in [12–14]. An aspect is one facet of coordination
within a configuration; any configuration management tool must compose aspects
to create a valid configuration.

5 Implementing Closure Operators

One reason that closure operators have not been explored so far is that they
are more difficult to implement than simple convergent operators. But there are
things that simply cannot be done without them, including management opera-
tions that exploit aspect composition. Further, the extra machinery required to
implement a closure operator is necessary anyway, for other reasons.

Closure operators are more difficult to construct than, e.g., automation scripts
that accomplish similar goals. The closure operator, unlike a simple script, must
be aware of its surroundings and have knowledge of its preconditions and post-
conditions. An ideal closure operator is safe under all conditions, in the sense that
it is safe to invoke the operator with the network in any conceivable state, and
as a result, the operator will not damage the network through lack of knowledge
(though it might not be capable of improving the network either).

Note first that the acceptance set of a closure operator can only be determined
by use of a validation model that determines what is acceptable. This model
is different from the assurance model that determines which settings will be
changed if the current configuration is not valid. Both of these models could be
specified as rulesets.

Consider, for example, how one would implement the operators O1 and O2

above. O1 is straightforward enough; installing the RPM for Apache might do
nicely as a first approximation. But O2 is a much more sophisticated operator
than has ever been written before. O2 must validate the install of O1 and then
operate in such a way that this validation is not lost by its changes. This is a
matter of coordinating settings in files with positions on disk, so that everything
one moves is matched with a parameter change in a file. Further, for O1 to accept
this change, it must share with O2 an underlying validation model that accepts
more states than what it can assure. Thus the key to implementing O1 and O2

is that both must agree (at some level) on what constitutes a valid web server,
invariant of how that validity was reached3.

With this validation model in hand (ostensibly, modeled as a set of “valid web
server configurations”), O1 checks whether this model is satisfied, and takes steps
to satisfy it if not. O2, by contrast, does nothing if the web server configuration is
invalid, but if it is valid, changes it to perhaps another valid state that responds
more quickly.

Why would we want to structure operators in this way? One answer is that
the monolithic construction of an operator that both installs and tunes a web
server is more complex than two operators, each of which handles one aspect, and
that there may in fact be different concepts and models of tuning that one might
wish to apply. Further, the added complexity of a validation model is desirable
whether we implement the tuning as one operator or two, because the alternative
is that the web server may be unintentionally rebuilt for no particularly good
reason, simply because “incidental” (and meaningless) changes in configuration
have occurred out of band. In order to satisfy the spirit of Cfengine, that ”if
it isn’t broken, don’t fix it”, one must have a model of what it means to be
functional or broken.

6 Validation Models

What is a “valid” web server? This is a complex question that has been studied in
some detail. First, inside the server, there are a set of data relationships that must
be preserved. But there is another validation model that depicts how certain data
must be present outside the web server. These are related via a closure model of
web service[10] that expresses external behavior as a set of exterior maps. But in
constructing this mapping, many incidental choices are made that have nothing
to do with the mapping, though they may affect performance. These incidental
choices must be coordinated so that the result is a functional web server. Thus
there are two kinds of validation models: an interior model that depicts data
(static) relationships, and an exterior model that depicts behavioral (dynamic)
relationships.

An example of an interior model (reprinted from [10]) is given in Fig. 3. A
web server configuration contains many parameters that must agree in order
for the webserver to function properly. The directory in which content appears
must both be accessible as a directory and mapped to an appropriate virtual
server. Likewise, the name of each file must correspond to the appropriate MIME
type, etc. Many of these parameters are “incidental” in the sense that choices for
internal location of a set of files seldom affects the externally observable behavior
of a web server.

The good news is that the internal model of a valid web server is a purely
declarative description of data relationships, similar to database integrity con-

3 Of course, RPM sets a flag that keeps a web server from being installed on top of
another, but this also allows that web server to be manually broken and not repaired.
So RPM does not really implement a closure operator.

 /some/where/index.htmlTypesConfig /etc/mime.types

<VirtualHost 192.168.0.1:80>
 DocumentRoot /some/where
 ServerName www.foo.edu
 DirectoryIndex index.cgi
 index.html
</VirtualHost>

<Directory /some/where>
 Options all
 Order allow,deny
 Allow from all
</Directory>

httpd.conf Filesystem

/etc/mime.types

 text/html html htm

Content-type: text/html

Server output

http://www.foo.edu/

..content..

..content..

Request URI

Fig. 3. A relational model of a specific web server’s data dependencies (reprinted from
[10]).

straints, and that it is both package-specific and policy-neutral, in the sense that
any policy can be enforced while obeying the model. The bad news is that no
such model has yet been constructed for many configurable packages in current
use. This is a bad thing, because such models are necessary in order to know
whether configuration management operators are working properly or not. An
instance that does not conform to the basic model for behavior cannot possibly
function properly.

Note that a model of validity is not an information model (e.g. CIM), but
rather a relational model, similar to a set of database constraints or an XML
schema. An overall model of a valid web server is (at some level) a version of the
server’s user manual, while a model of a “fast web server” is an embodiment of
best practices for increasing service speed while obeying the user manual.

It might be best to think of each of these models as an XML document
conforming to a particular XSchema; this seems to describe the models in the
web server example, among others. The O1 XSchema simply defines what is
valid as a configuration according to the user manual, while the O2 XSchema
(which might change over time) eliminates some valid configurations that exhibit
poor performance. In the manner of BCFG2 or LCFG, information in an XML
configuration file (conforming to the XSchema) corresponds with information
stored in package configuration files, wherever they might be located. We do not

endorse the use of XML and XSchema for this purpose; we merely remark that
they seem powerful enough to serve as a modeling language for this purpose.

To make closure operators practical, we need some form of “strategic schema”
for each managed package or unit. This schema serves as a trigger for “tactics”
that enforce one way to obey the schema. The true purpose of the schema, how-
ever, is to allow an operator to leave “well enough” alone. By defining a notion
of “health” that is independent of the mechanism of assurance, one admits other
potentially clever assurance mechanisms that arise from outside the operator in
question.

7 Properties of Closure Operators

Creating schemas for common packages (or perhaps one might say, “frequently
encountered intents”) seems a daunting task. Why would one want to do this? In
this section, we discuss some of the properties of closure operators as motivation
for the work ahead.

First we describe several “composition theorems”, that show when a set of
closure operators O = {O1, . . . , Ok} can be thought of as a single closure op-
erator O, where applying O consists of randomly choosing and applying one of
O1, . . . , Ok.

First,

Theorem 1. Suppose we have a set of k closure operators O = {O1, . . . , Ok}
with the same acceptance set Oi. Then the set of operators, viewed as one oper-
ator, is a closure operator.

Proof. View the set of operators as one operator that randomly chooses which
sub-operator to call. The acceptance set of this operator is Oi, while the assur-
ance set is the union of the individual assurance sets Oa

j . 2

This is just tactic composition in the presence of shared strategy. The most
important property of closure operators – as compared to regular Cfengine op-
erators – is flexibility of response. Most current operators correspond to “one
tactic” for assuring a behavior. “Multiple tactics” can be tried by one closure
operator to achieve a coherent aim.

Moreover,

Theorem 2. Suppose the acceptance sets of O1, . . . , Ok intersect in some non-
empty set Oi. If O contains the assurance set of one operator Oj , then the set
of these operators, viewed as one random operator, is a closure operator.

Proof. As before, consider the operator O that randomly calls some Om when
invoked. When Oj is invoked, it assures a state inside the acceptance set. Since
operators are chosen randomly to be invoked, it is only a matter of time until it
is invoked, and other operators in O, once it assures an appropriate state, will
not modify Oj ’s tactics. 2

Agreement is not always necessary; orthogonality is sufficient:

Theorem 3. Suppose that two operators O1, O2 operate on orthogonal regions
S1, S2 of a product space S1 ⊗S2, so that O1 affects the chosen subset of S1 and
O2 affects S2 only. Then {O1, O2} is a closure operator.

Proof. Suppose O1 assures Sa

1
, a subset of its acceptance set S i

1
, while O2 assures

Sa

2
, a subset of its acceptance set S i

2
. Then {O1, O2} assures Sa

1
⊗Sa

2
and accepts

Si
1 ⊗ Si

2, so it is a closure operator. 2

In other words, closure operators acting on independent entities can be composed
into one closure operator.

In general,

Theorem 4. Suppose that a set of operators O = {O1, . . . , Ok} can be factored
into subsets of operators, each of which acts on an orthogonal part of config-
uration, where each subset satisfies the conditions of Theorem 2. Then O is a
closure operator.

Proof. Apply Theorem 2 to infer that each subset is a closure operator, and then
use Theorem 3 inductively to get the result. 2

Conversely,

Theorem 5. Any set of operators that is reachably consistent can be considered
as a single closure operator.

Proof. If a set of operators is reachably consistent, then it shares an acceptance
set that is the intersection of all operators’ acceptance sets, and for any initial
state, the operators achieve some element of that subset, so that at least one
operator in the set must have each state in the intersection in its assurance set.
2

We have shown, thus, that under a variety of conditions, closure operators
compose to make a single closure operator. What, then, is inconsistency? We
take the approach of [15], that inconsistency indicates that the operators in a
set represent two or more distinct strategies, so that sets of operators can be
factored into strategic groups.

Two operators O1 and O2 are inconsistent if there is some state in O1’s
assurance set that is not in O2’s acceptance set, and vice-versa. It is necessary
for lack of acceptance to be symmetric, or the operators would settle among
themselves upon the more stringent acceptance set and become consistent. Thus
inconsistency is a “flip-flop” situation in which two operators feel compelled to
undo each other’s tactics.

Detecting inconsistency is difficult if not impossible for distributed operators
that do not necessarily have knowledge of each others’ strategies and/or goals.
We study this problem in [16] and conclude that consistency is best considered
to be a statistical rather than logical property. We demonstrate methods for eval-
uating the hypothesis that a set of operators is consistent, and relate probability
of consistency to time of observation.

8 Conclusions

So far, autonomic computing has been asserted by hierarchical means, in which
more limited control loops are part of a larger hierarchy of control. In this paper,
we propose a boldly different strategy, of composing control loops as peers in a
control strategy. In this paper, we have explored the structure of such a set of
operators, from a practical and an algebraic standpoint. In a second paper[16],
we explore notions of operator consistency that are meaningful and useful in this
context.

Closure operators are difficult to build, but have some really nice properties.
The most significant of these is that they can be composed with other closure
operators without tactical agreement, and the results can emerge as a new control
strategy that is the composition of several less-general control strategies. It can
be extremely difficult to extend a given operator to create a new function, while
that function may be added by another consistent operator with less effort,
provided that the two operators share the same basic behavioral model. The
behavioral model is thus the pivot upon which effective composition is based,
and is needed whether composition is desired or not. The result is a compositional
model of autonomics in which operators compose simply because they agree on
strategy, but not necessarily on tactics.

There are several directions for future work. First, the theory suggests an
extension to Cfengine that allows assurance sets to be smaller than acceptance
sets. This is a task of significant complexity, however, because Cfengine currently
lacks the modeling machinery required to define acceptance as a concept sep-
arate from assurance. Using this extension, we can develop practical examples
of cooperative management, such as performance tuning. Aside from inspiring
new capabilities for Cfengine, this theory allows other autonomic control loops
to be composed in like manner – as peers in an operator calculus. It remains to
be seen whether this is better, worse, or just different than composing control
loops via hierarchy.

But the theory is most powerful in that it offers a method for dealing with
open management situations in which there is no way to establish sufficient
closed control loops. By expressing management tools and user actions (including
intrusions) as operators, we have one coherent theoretical model for everything
that can happen in a network. The future promise of closure operators is that
we can express mitigating influences for network problems in terms of closure
operator activations and deactivations, rather than in terms of selecting features
in a monolithic management tool. This enables highly dynamic management
strategies, including intelligent operators whose nature evolves with changing
conditions, and that can be deployed, erased, recompiled, and redeployed in a
live environment. We believe this high level of dynamism will be required to deal
with the ubiquitous computing networks of tomorrow.

9 Acknowledgements

This paper would not exist without the inspiration of the Cfengine community,
including Mark Burgess and the many users of Cfengine who have dared to learn
a different way of thinking.

References

1. Burgess, M.: A site configuration engine. Computing Systems 8(2) (1995) 309–337
2. Burgess, M., Ralston, R.: Distributed resource administration using cfengine.

Softw., Pract. Exper. 27(9) (1997) 1083–1101
3. Burgess, M.: Computer immunology. In: LISA, USENIX (1998) 283–298
4. Burgess, M.: Theoretical system administration. In: LISA, USENIX (2000) 1–13
5. Burgess, M.: Cfengine as a component of computer immune-systems. Proceedings

of the Norwegian Conference on Informatics (1998)
6. Burgess, M., .Frisch, A.: Promises and cfengine: A working specification for

cfengine 3. Technical report, Oslo University College (November 2005)
7. Burgess, M.: An approach to understanding policy based on autonomy and vol-

untary cooperation. In Schönwälder, J., Serrat, J., eds.: DSOM. Volume 3775 of
Lecture Notes in Computer Science., Springer (2005) 97–108

8. Burgess, M., Couch, A.: Autonomic computing approximated by fixed-point
promises. In: Proceedings of the First IEEE International Workshop on Mod-
eling Autonomic Communication Environments (MACE), Multicon Verlag (2006)
197–222

9. Couch, A., Hart, J., Idhaw, E.G., Kallas, D.: Seeking closure in an open world: A
behavioral agent approach to configuration management. In: LISA ’03: Proceedings
of the 17th USENIX conference on System administration, Berkeley, CA, USA,
USENIX (2003) 125–148

10. Schwartzberg, S., Couch, A.: Experience implementing a web service closure. In:
LISA ’04: Proceedings of the 18th USENIX conference on System administration,
Berkeley, CA, USA, USENIX (2004) 213–230

11. Wu, N., Couch, A.: Experience implementing an ip address closure. In: LISA ’06:
Proceedings of the 20th USENIX conference on System administration, Berkeley,
CA, USA, USENIX (2006) 119–130

12. Burgess, M., Couch, A.L.: Modeling next generation configuration management
tools. In: LISA, USENIX (2006) 131–147

13. Anderson, P.: Configuration Management. SAGE Short Topics in System Admin-
istration. USENIX (2007)

14. Couch, A.: Configuration management. In Bergstra, J., Burgess, M., eds.: Hand-
book of Network and System Administration. Elsevier, Inc. (2007) 75–133

15. Couch, A., Sun, Y.: On the algebraic structure of convergence. In: Proc. DSOM
2003, Springer Berlin (2003) 28–40

16. Couch, A., Chiarini, M.: Dynamic consistency analysis for convergent operators.
In: AIMS. (2008) (submitted)

