
SNMP Trace Analysis Definitions

Gijs van den Broek1, Jürgen Schönwälder2, Aiko Pras1, and Matúš Harvan3

1 Computer Science, University of Twente, Netherlands
j.g.vandenbroek@student.utwente.nl

a.pras@cs.utwente.nl
2 Computer Science, Jacobs University Bremen, Germany

j.schoenwaelder@jacobs-university.de
3 Computer Science, ETH Zurich, Switzerland

mharvan@inf.ethz.ch

Abstract. The Network Management Research Group (NMRG) started
an activity to collect traces of the Simple Network Management Protocol
(SNMP) from operational networks. To analyze these traces, it is neces-
sary to split potentially large traces into more manageable pieces that
make it easier to deal with large data sets and simplify the analysis of
the data. This document introduces some common definitions that have
been found useful for implementing tools to support trace analysis.

Key words: simple network management protocol, traffic modeling

1 Introduction

The Simple Network Management Protocol (SMMP) was introduced in the late
1980s. Since then, several evolutionary protocol changes have taken place, re-
sulting in the SNMP version 3 framework (SNMPv3), published as full standard
in 2002 [1, 2]. Extensive use of SNMP has led to significant practical experience
by both network operators and researchers. However, up until now only little
research has been done on characterizing and modeling SNMP traffic.

Since recently, network researchers are in the possession of network traces,
including SNMP traces, captured on operational networks. The availability of
SNMP traces enables research on characterizing and modeling real world SNMP
traffic. Experience with SNMP traces has shown that traces must be large enough
in order to make proper observations. A more detailed motivation for collecting
SNMP traces and guidelines how to capture SNMP traces can be found in [3].

The analysis of large SNMP traces can take a large amount of processing time.
Therefore, it is often desirable to focus the analysis on smaller, relevant sections
of a trace. This in turn requires a proper way to identify these smaller sections
of a trace. This document describes a number of identifiable sections within a
trace which make specific research on these smaller sections more practical.

The rest of the paper is structured as follows. An overview of the definitions is
given in the next section and subsequent sections define messages, traces, flows,
slices, slice prefixes, and slice types. Related and future work is discussed before
the paper concludes.



2 van den Broek, Schönwälder, Pras, Harvan

2 Overview

Fig. 1 shows the various entities associated with an SNMP trace and how they
relate to each other.

Message Trace Flow

Slice Slice TypeWalk

belongs to0..* 1 contains1 0..*

contains

1

0..*

of type 10..*is a 10..1

Fig. 1. Relationship between messages, traces, flows, slices and slice types

The most central entity in Fig. 1 is an SNMP trace, consisting of a po-
tentially large set of SNMP messages. An SNMP trace is the result of recording
SNMP traffic on a specific network for a specific time duration. Such a trace may,
depending on the number of hosts in the respective network, contain SNMP mes-
sages exchanged between possibly many different SNMP engines. The messages
contained in a trace may be represented in different formats. For the purpose of
this document, the simple comma separated values (CSV) format defined in [3]
contains sufficient information to split a trace into smaller sections.

The SNMP messages belonging to an SNMP trace may have been exchanged
between many different SNMP engines running on different hosts. Therefore, a
first obvious way of separating a trace into smaller sets of SNMP messages is the
separation of a trace into flows. Each flow contains only those SNMP messages of
an SNMP trace that have been exchanged between two network layer endpoints.
Such a separation may be necessary in case one wants to analyze specific SNMP
traffic characteristics (e.g., number of agents managed by a management station)
and wants to rule out network endpoint specific behaviour (e.g., different SNMP
management stations may have different polling configurations).

Flows within traces can still be quite large in terms of the number of messages
they contain. Therefore, it may be necessary to split a flow into even smaller
sections called slices. A slice contains all SNMP messages of a given flow that
are related to each other in time and referenced information. Splitting a flow into
slices makes it possible to separate SNMP messages within traces that belong
to each other.

For example, a slice may contain the SNMP messages exchanged between
an agent and a manager, which polls that agent in a single polling instance.
The manager may be configured to poll that agent every once in a while. If the
requested information from the agent remains unchanged, then the respective
slices of SNMP traffic occurring between this manager and agent will be highly



SNMP Trace Analysis Definitions 3

comparable. In such a case the slices will be of the same slice type. Similar slices
will thus be considered of the same slice type and incomparable slices will not
be of the same slice type.

Besides the fact that each slice is of specific slice type, slices can also be of
a specific form with respect to the messages encompassing a slice. For example,
slices containing a sequence of linked GetNext or GetBulk requests are commonly
called an SNMP walk. Note that only a subset of all slices will be walks.

3 Messages

SNMP messages carry protocol data units (PDUs) realizing a small set of well
defined protocol operations [4]. The PDUs can be used to classify SNMP mes-
sages.

Notation 1. The properties of an SNMP message M are denoted as follows:
M.type = operation type of message M (get, getnext, ...)
M.class = class of message M (according to RFC 3411)
M.tsrc = transport layer source endpoint of message M
M.tdst = transport layer destination endpoint of message M
M.nsrc = network layer source endpoint of message M
M.ndst = network layer destination endpoint of message M
M.reqid = request identifier of message M
M.time = capture timestamp of message M
M.oids = OIDs listed in varbind list of message M
M.values = values listed in varbind list of message M

These properties of an SNMP message can be easily extracted from the ex-
change formats defined in [3].

Definition 1. This definition establishes the following message classes:

1. A read request message is a message M containing a PDU of type Get-
Request, GetNextRequest, or GetBulkRequest.

2. A write request message is a message M containing a PDU of type Set-
Request.

3. A notification request message is a message M containing a PDU of
type InformRequest.

4. A notification message is a message M containing a PDU of type Trap
or InformRequest.

5. A request message is a message M which is either a read request message,
a write request message, or a notification request message.

6. A response message is a message M containing a PDU of type Response
or of type Report.

7. A non-response message is a message M which is either a read request
message, a write request message, or a notification message.

8. A command message is a message M which is either a read request mes-
sage or a write request message.



4 van den Broek, Schönwälder, Pras, Harvan

Report messages are treated like Response messages since the SNMPv3 spec-
ifications currently use Report messages only as an error reporting mechanism,
always triggered by the processing of some request messages. In case future
SNMP versions or extensions use Report messages without having a request
triggering the generation of Report messages, we may have to revisit the defini-
tion above.

Definition 2. A set of command group messages consists of all messages
M satisfying either of the following two conditions:

1. M is a command message
2. M is a response message and there exists a command message C such that

the following holds:

M.reqid = C.reqid
M.tdst = C.tsrc
M.tsrc = C.tdst
(M.time− C.time) < t

The parameter t defines a maximum timeout for response messages.

This definition requires that the response message originates from the trans-
port endpoint over which the request message has been received. This is not
strictly required by SNMP transport mappings and in particular the UDP trans-
port mapping allows to send responses from different transport endpoints. While
sending response messages from a different transport endpoint is legal, it is also
considered bad practice causing interoperability problems, since some manage-
ment systems do not accept such messages.

It was decided to require matching transport endpoints since doing so signifi-
cantly simplifies the procedures below and avoids accidentally confusing requests
and responses. Implementations responding from different transport endpoints
will lead to (a) a larger number of requests without related responses (and likely
no retries) and (b) a similarly large number of responses without a matching re-
quest. If such behavior can be detected, the traces should be investigated and if
needed the transport endpoints corrected. The requirement for matching trans-
port endpoints only affects request / response pairs. It is perfectly fine for a
manager to use different transport layer endpoints in different polling instances,
or even different operations (i.e., slices) within the same polling instance.

Definition 3. A set of notification group messages consists of all messages
M satisfying either of the following two conditions:

1. M is a notification message
2. M is a response message and there exists a notification request message N

such that the following holds:

M.reqid = N.reqid
M.tdst = N.tsrc
M.tsrc = N.tdst
(M.time−N.time) < t



SNMP Trace Analysis Definitions 5

The parameter t defines a maximum timeout for response messages.

This definition again requires matching transport endpoints for notification
group messages.

4 Traces and Flows

Traces are (large) sets of SNMP messages that are the result of recording SNMP
traffic using a single traffic recording unit (e.g., using tcpdump) on a network
segment carrying traffic of one or more managers and agents. Traces being used
in the remainder of this document may be altered as a result of anonymization,
which may result in some message information loss.

Traces may contain SNMP messages that have been exchanged between pos-
sibly many different network layer endpoints. One way of making an initial sep-
aration of such a trace into more manageable pieces is by splitting the messages
into flows. Each flow contains only messages that have occurred between two
network layer endpoints.

4.1 Trace and Flow Definition

Definition 4. An SNMP trace (or short “trace”) T is an ordered set of zero
or more SNMP messages M . All messages M in T are chronologically ordered
according to the capture timestamp M.time.

Definition 5. A flow F is the set of messages of an SNMP trace T with the
following properties:

1. All response messages originate from a single network endpoint.
2. All non-response messages originate from a single network endpoint.
3. All messages are either command group messages with parameter t or noti-

fication group messages with parameter t.

Parameter t defines the maximum timeout for response messages. The value
of t should be chosen such that only response messages to the respective non-
response messages are considered part of the same flow. Analysis of a large
number of traces shows that 25 seconds is a proper default value for t.

It is possible that response messages of a trace cannot be classified to belong
to any flow. This can happen if request messages triggering the response messages
were not recorded (for example due to asymmetric routing), or because response
messages were originating from transport endpoints different from the endpoint
used to receive the associated request message.

This definition of a flow indicates that it can be either unidirectional (e.g., a
manager sending non-response messages to a non-responding agent), or bidirec-
tional (e.g., a manager reading a table from an agent). This is different from other
flow definitions, like the NetFlow definition [5]. The flow definition is mostly con-
sistent with the definition of an SNMP flow used in [6]. The difference is that the



6 van den Broek, Schönwälder, Pras, Harvan

tool used to generate the data reported in [6] did only require that the network
layer source endpoint of the response messages matches the destination network
layer endpoint of the associated request messages.

Definition 6. A flow initiator is the network layer endpoint of the two end-
points involved in a flow, which is responsible for sending the first non-response
message.

Notation 2. The properties of a flow F are denoted as follows:
F.type = type of the flow F (command/notification)
F.nsrc = network layer source endpoint of F
F.ndst = network layer destination endpoint of F
F.start = timestamp of the first message in F
F.end = timestamp of the last message in F
F.init = initiator of the flow F
F.t = parameter t of F (maximum timeout for response messages)

Subsequently, flows containing only command group messages are called com-
mand flows. Similarly, flows containing only notification group messages are
called notification flows.

4.2 Trace and Flow Example

Table 1 shows an example of a trace consisting of SNMP messages that were ex-
changed between different network layer endpoints. The network layer endpoints
are represented by A, B, C and D.

Table 1. Example trace containing two flows

Message Time [s] Direction Type Reqid Flow

0 0.00 A→ B GetNext 1 F1

1 0.04 C → D Get 10 F2

2 0.05 B → A Response 1 F1

3 0.08 D → C Response 10 F2

4 0.11 A→ B GetNext 2 F1

5 0.15 B → A Response 2 F1

6 0.18 A→ B GetNext 3 F1

7 0.22 D → C Trap 14 F3

8 0.25 B → A Response 3 F1

The first flow F1 consists of SNMP messages that have been exchanged be-
tween network layer endpoints A and B, where all response messages originate
from B and all non-response messages originate from A. The minimum value of
parameter t for this flow is 0.07 seconds, since that is the longest time between
a request and its subsequent response message.



SNMP Trace Analysis Definitions 7

The second flow F2 contains SNMP messages exchanged between network
layer endpoints C and D, where all response messages originate from D and all
non-response messages originate from C. The minimum value of parameter t for
this flow is 0.04 seconds.

The third flow F3 contains the remaining SNMP messages of the trace that
occurred between network layer endpoints C and D. In this case the non-response
message originates from D. There is no parameter t applicable to this flow,
because there are no response messages.

5 Slices

Flows can still contain a large amount of SNMP messages. A flow should there-
fore be split up into even smaller sets of messages. One way of identifying mean-
ingful subsets of messages of a flow would be by considering the behavior of
managers and agents. In the case of managers, they are usually configured to
perform regular polling instances. In such a polling instance, the manager might
poll a number of agents. Since a flow contains only the messages exchanged be-
tween two network layer endpoints, a flow therefore probably consists of only a
subset of the messages that are part of a polling instance. So, one option of find-
ing smaller, meaningful subsets of messages within flows, would be by looking
for messages that belong to a particular polling instance. Such a smaller set of
messages is called a slice.

5.1 Slice Definition

Definition 7. A slice S with parameter e is a subset of messages in a flow F
for which the following properties hold:

1. All messages are exchanged between the same two transport endpoints (a
single transport endpoint pair).

2. All non-response messages must have a PDU of the same type.
3. All messages with a PDU of type Get, Set, Trap, or Inform must contain the

same set of OIDs.
4. Each GetNext or GetBulk message must either contain the same set of OIDs

as the preceding request or it must be linked to a response of the last previously
answered request (i.e., the request must contain at least one OID that has
been contained in the (repeater) varbind list of a preceding response message
of the last answered request message).

5. All Response messages must follow a previous request message that is part
of the same slice.

6. For any two subsequent non-response messages Q1 and Q2 with Q1.time <
Q2.time, the following condition must hold:

(Q2.time−Q1.time) < e



8 van den Broek, Schönwälder, Pras, Harvan

The first item in the slice definition requires that the messages of a single slice
are exchanged between a single transport layer endpoint pair. This is different
from the flow definition, which requires a single network layer endpoint pair. The
choice of looking at the transport layer endpoints in the case of slices is based
on the assumption that, for instance, multiple managers and agents might be
operating from the same respective network layer endpoint. Another assumption
is that a manager and an agent will only use a single transport layer endpoint
respectively when they communicate for the duration of a slice (or even a polling
instance). A previous section already mentioned some issues when a manager or
agent uses different transport layer endpoints within a single polling instance.

The parameter e defines the maximum time between two non-response mes-
sages that belong to a slice. This parameter should be chosen such that unrelated
non-response messages within a flow are not considered to be of the same slice.
Unrelated non-response messages are those that, for instance, belong to different
polling instances. The parameter e should therefore be larger than the retrans-
mission interval in order to keep retransmissions within a slice and smaller than
the polling interval used by the slice initiator.

The value of parameter e might be closely related to parameter t of the
respective flow the slice is part of. For instance, if parameter e is very large,
than t is also likely to be very large and vice versa. Also, if parameter e is very
small, then t is probably also very small. However, it is not possible to strictly
state that e and t are always closely related to each other, because parameter e
is specific for a slice. This is in contrast with parameter t which is specific for a
much larger set of messages, a flow.

Definition 8. A slice initiator is one of the two transport layer endpoints
involved in a slice, which is responsible for sending the chronologically first non-
response message.

Notation 3. The properties of a slice S are denoted as follows:
S.type = type of non-response messages in S
S.tsrc = transport layer endpoint of initiator of S
S.tdst = transport layer endpoint of non-initiator of S
S.start = timestamp of the chronologically first message in S
S.end = timestamp of the chronologically last message in S
S.init = initiator of slice S
S.e = parameter e of S (maximum time between two

non-response messages)

5.2 Slice Example

Table 2 shows an example of a flow containing messages exchanged between
transport layer endpoints A, B, and C. Considering the timing of the messages,
a proper value of e should be 0.14 ≤ e ≤ 299.82 seconds. Such a value for
parameter e will separate the flow into two apparent polling instances, which
each contain the same set of messages.



SNMP Trace Analysis Definitions 9

Table 2. Example flow containing three slices

Message Time [s] Direction Type Reqid OIDs Slice

0 0.00 A→ B Get 1 alpha.1 S1

1 0.06 B → A Response 1 alpha.1 S1

2 0.12 A→ B Get 2 beta.1 S2

3 0.17 B → A Response 2 beta.1 S2

4 300.00 A→ B Get 3 alpha.1 S3

5 300.05 B → C Set 4 gamma.1 S4

6 300.07 B → A Response 3 alpha.1 S3

7 300.14 A→ B GetNext 5 beta S5

8 300.19 B → A Response 5 beta.1 S5

9 300.32 A→ B GetNext 6 beta.1 S5

10 300.52 A→ B GetNext 7 beta.1 S5

11 300.58 B → A Response 7 delta.1 S5

The first slice S1 consists of a Get request and its subsequent response. A
similar request is recorded later in slice S3 but since we assume e as discussed
above, the slices S1 and S3 are distinct. The second slice S2 also contains a
Get request and its subsequent response. This slice is different from S1 since a
different OID is requested. The slice S4 consists of a Set request that has not
been answered. (A potential reason is that the SNMP engine listening on the
transport layer endpoint C did not grant write access and dropped the message.)

The last slice S5 contains a sequence of linked GetNext requests. The GetNext
request message 10 is likely a retransmission of the GetNext request message 9.
This example demonstrates that retransmissions are recorded in the slice that
contains the original request.

6 Slice Signature and Prefix

As noted in the beginning of this document, it is desirable that slices can be
tested for equality/comparability. This is where the slice prefix comes in. The
slice prefix provides one of the means to compare slices. Using the slice prefix
and a few other parameters of a number of slices, one can determine which slices
should be considered “equal” and which of them are incomparable. This will
assist in the process of finding potentially other relations.

The slice prefix is a set of OIDs. This set is constructed from the messages
that make up a single slice. So, for example, a slice that is the result of a manager
requesting the contents of a particular table (with OID alpha) on an agent using
a simple single varbind GetNext walk, starting at the table OID alpha, shall
yield a slice prefix which consists of the OID alpha.

Because the aim is to compare various slices using the slice prefix (along
some other characteristics of a slice), this implicitly suggests the need to know
whether a number of slices are the result of the same behaviour (i.e., specific
configuration) of the initiating party of these slices. For example, one may want



10 van den Broek, Schönwälder, Pras, Harvan

to know whether a number of slices that involve a single manager and a single
agent were the result of just one specific configuration of that manager. Multiple
slices, that may all be initiated by that same manager and each slice possibly
occurred in different polling instances, may in fact be the result of the same
specific configuration of that particular manager. So, since in this case the specific
configuration of the manager is only relevant for determining the behaviour, the
slice prefix should be constructed based on OIDs in messages originating from
that manager only. More generally, only the messages within slices that are
sent by the initiating party (the non-response messages) are considered for the
determination of the respective slice prefix of a slice.

6.1 Slice Signature and Prefix Definition

Definition 9. A slice signature S.sig of a slice S is a set of OIDs derived from
the OIDs contained in the non-response messages of a slice. Let r(S) denote the
set of response messages of slice S and n(S) the set of non-response messages
of S. Then the set S.sig consists of the following OIDs:

S.sig =


⋃

n∈n(S)(n.oids) \
⋃

r∈r(S)(r.oid) S.type is GetNext or GetBulk⋃
n∈n(S)(n.oids) otherwise

The slice signature summarizes which OIDs have been carried in a slice and
is straightforward to compute. However, there are situations in some GetNext
or GetBulk sequences where the signature might contain some unwanted OIDs
as will be demonstrated by an example below.

To further condense signatures, it is necessary to introduce a prefix relation-
ship between OIDs. This prefix relationship can then be used to reduce a slice
signature to a slice prefix.

Definition 10. An OID a = a1.a2...an is a prefix of OID b = b1.b2...bm if and
only if n < m and ai = bi for 1 ≤ i ≤ n.

Definition 11. The slice prefix S.slice is the set of all OIDs o in S.sig for
which there is no p in S.sig such that p is a prefix of o.

6.2 Slice Signature and Prefix Example

The following example demonstrates how a slice prefix is determined. Consider
the case that a single manager A is set to poll a specific agent B. Manager A
is programmed to retrieve some values from B. A single slice may contain the
messages shown in Table 3.

The slice shown in Table 3 has a number of interesting properties. First, not
all columns in the retrieved table have an equal length. Second, the manager
is set to request the sysUpTime on an irregular basis (i.e., every few requests).
Third, the manager attempts to fill “holes” in the table and finally the order of
referenced OIDs in GetNext messages changes.



SNMP Trace Analysis Definitions 11

Table 3. Example slice for calculating a slice prefix

Message Direction Type OIDs

0 A→ B GetNext alpha, beta
1 B → A Response alpha.1, beta.1
2 A→ B GetNext alpha.1, beta.1
3 B → A Response alpha.2, beta.3
4 A→ B GetNext beta.2, alpha.2, sysUpTime
5 B → A Response beta.3, alpha.3, sysUpTime.0
6 A→ B GetNext beta.3, alpha.3
7 B → A Response gamma.1, alpha.4
8 A→ B GetNext alpha.4
9 B → A Response delta.1

All of these properties do not influence the process for determining the slice
signature. The slice prefix is constructed as follows:

1. The union of all OIDs in non-response messages is the following set:

N = { alpha, beta, alpha.1, beta.1, beta.2, alpha.2,

sysUpT ime, beta.3, alpha.3, alpha.4 }

2. The union of the OIDs in response messages is the following set:

R = { alpha.1, beta.1, alpha.2, beta.3, alpha.3,

sysUpT ime.0, gamma.1, alpha.4, delta.1 }

3. Subtracting the two sets results in the slice signature S.sig:

S.sig = N −R = { alpha, beta, beta.2, sysUpT ime }

The element beta.2 exists, because the manager was trying to fill a “hole”
in a table. Since these “holes” reside in the tables on the agent side and may
change dynamically, they do not really help in describing the behavior of the
initiating party.

4. Since beta is a prefix of beta.2, the slice prefix becomes the following set:

S.prefix = { alpha, beta, sysUpT ime }

The slice prefix does not include beta.2 anymore and thus a manager retriev-
ing the same columns alpha and beta with and without “holes” will produce
slices with the same slice prefix.

7 Slice Types

As described previously, the slice type allows for comparing slices. This means
that any number of slices that are of the same slice type may be considered an
equivalence class and may therefore be considered to be the result of the same
behaviour of the slice initiator.



12 van den Broek, Schönwälder, Pras, Harvan

7.1 Slice Type Definition

Definition 12. Two slices A and B satisfy the binary slice equivalence rela-
tion A ∼ B if the following properties hold:

1. All messages in A and B have been exchanged between the same network
layer endpoints.

2. All read request messages, write request messages, and notification messages
in A and B originate from the same network layer endpoint.

3. All non-response messages in A and B are of the same type.
4. The slices A and B have the same prefix, that is A.prefix = B.prefix.

It can be easily seen that the relation ∼ is reflexive, symmetric, and transitive
and thus forms an equivalence relation between slices.

Definition 13. Let S be a set of slices, then all slices in the equivalence class

[A] = {s ∈ S|s ∼ A}

with A ∈ S, are of the same slice type.

7.2 Slice Type Example

The flow shown in Table 4 contains two slices. The first slice S1 contains messages
that have been exchanged between transport layer endpoints A and B while the
second slice S2 contains messages that have been exchanged between transport
layer endpoints C and D. However, the network layer endpoints of this slice are
the same as the first slice and all non-response messages in both slices originate
from the same network layer endpoint.

Table 4. Example for slice equivalence and slice types

Message Direction Type OIDs Slice

0 A→ B GetNext alpha, beta S1

1 B → A Response alpha.1, beta.1 S1

2 A→ B GetNext alpha.1, beta.1 S1

3 B → A Response alpha.2, beta.2 S1

4 A→ B GetNext alpha.2, beta.2 S1

5 B → A Response gamma.1, delta.1 S1

6 C → D GetNext alpha, beta S2

7 D → C Response alpha.1, beta.1 S2

8 C → D GetNext alpha.1, beta.1 S2

9 D → C Response gamme.1, delta.1 S2

As can be verified easily, the slices S1 and S2 satisfy the slice equivalence
relationship, that is S1 ∼ S2 and they form an equivalence class under ∼, which
we call a slice type.



SNMP Trace Analysis Definitions 13

8 Related and Future Work

The performance of SNMP has been the subject of several studies. Some papers
such as [7, 8] compare the performance of centralized SNMP management to dis-
tributed management approaches while other papers compare the performance
of the SNMP protocol with middleware systems such as CORBA or Web Ser-
vices [9–11]. The impact of security protocols on SNMP performance has been
studied in [12–14]. Some authors have formulated models for the SNMP protocol
[15, 16].

All these studies have in common that they make assumptions how SNMP
is used in practice, due to a lack of commonly accepted models how SNMP is
used in practice. To address this issue, some researchers active in the Network
Management Research Group (NMRG) of the Internet Research Task Force
(IRTF) started an effort to collect traces from operational networks and to build
the necessary tools to analyze them [3]. First results were published in [6] and it
became clear that precise definitions of basic concepts, such as those provided in
this paper, are needed in order to produce meaningful and comparable results.
The authors are currently using and extending these definitions in order to study
the periodicity of SNMP traffic [17] and table retrieval algorithms.

9 Conclusions

The analysis of SNMP traces requires a collection of common and precise def-
initions in order to establish a basis for producing meaningful and compara-
ble results. This paper provides such a collection of basic definitions that have
been developed over time and are also being reviewed and discussed within the
NMRG of the IRTF. This paper is a condensed summary of a more detailed
document [18] submitted to the NMRG and written to provide an early stable
reference while the work in the NMRG continues and to foster discussion within
the broader network management research community.

Acknowledgement

The work reported in this paper is supported by the EC IST-EMANICS Network
of Excellence (#26854).

References

1. Case, J., Mundy, R., Partain, D., Stewart, B.: Introduction and Applicability
Statements for Internet Standard Management Framework. RFC 3410, SNMP
Research, Network Associates Laboratories, Ericsson (December 2002)

2. Harrington, D., Presuhn, R., Wijnen, B.: An Architecture for Describing Simple
Network Management Protocol (SNMP) Management Frameworks. RFC 3411,
Enterasys Networks, BMC Software, Lucent Technologies (December 2002)



14 van den Broek, Schönwälder, Pras, Harvan

3. Schönwälder, J.: SNMP Traffic Measurements and Trace Exchange Formats. In-
ternet Draft (work in progress) <draft-irtf-nmrg-snmp-measure-04.txt>, Jacobs
University Bremen (March 2008)

4. Presuhn, R.: Version 2 of the Protocol Operations for the Simple Network Man-
agement Protocol (SNMP). RFC 3416, BMC Software (December 2002)

5. Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954, Cisco
Systems (October 2004)

6. Schönwälder, J., Pras, A., Harvan, M., Schippers, J., van de Meent, R.: SNMP
Traffic Analysis: Approaches, Tools, and First Results. In: Proc. 10th IFIP/IEEE
International Symposium on Integrated Network Management. (May 2007)

7. Zapf, M., Herrmann, K., Geihs, K.: Decentralized SNMP Management with Mobile
Agents. In: Proc. 6th IFIP/IEEE International Symposium on Integrated Network
Management, Boston (May 1999) 623–635

8. Fuggetta, A., Picco, G., Vigna, G.: Understanding Code Mobility. IEEE Transac-
tions on Software Engineering 24(5) (May 1998) 342–361

9. Gu, Q., Marshall, A.: Network Management Performance Analysis and Scalability
Tests: SNMP vs. CORBA. In: Proc. 2004 IEEE/IFIP Network Operations and
Management Symposium, Seoul (April 2004) 701–714

10. Pras, A., Drevers, T., van de Meent, R., Quartel, D.: Comparing the Performance
of SNMP and Web Services based Management. IEEE Transactions on Network
and Service Management 1(2) (November 2004)

11. Pavlou, G., Flegkas, P., Gouveris, S., Liotta, A.: On Management Technologies
and the Potential of Web Services. IEEE Communications Magazine 42(7) (July
2004) 58–66

12. Du, X., Shayman, M., Rozenblit, M.: Implementation and Performance Analysis of
SNMP on a TLS/TCP Base. In: Proc. 7th IFIP/IEEE International Symposium
on Integrated Network Management, Seattle (May 2001) 453–466

13. Corrente, A., Tura, L.: Security Performance Analysis of SNMPv3 with Respect
to SNMPv2c. In: Proc. 2004 IEEE/IFIP Network Operations and Management
Symposium, Seoul (April 2004) 729–742

14. Marinov, V., Schönwälder, J.: Performance Analysis of SNMP over SSH. In: Proc.
17th IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management (DSOM 2006). Number 4269 in LNCS, Dublin, Springer (October
2006) 25–36

15. Pattinson, C.: A study of the behaviour of the simple network management proto-
col. In: Proc. 12th IFIP/IEEE Workshop on Distributed Systems: Operations and
Management, Nancy (October 2001)

16. Chen, T., Liu, S.: A Model and Evaluation of Distributed Network Management
Approaches. IEEE Journal on Selected Areas in Communications 20(4) (May
2002) 850–857

17. van den Broek, J.G.: Periodicity of SNMP Traffic. BSc Thesis (August 2007)
18. van den Broek, J.G., Schönwälder, J., Pras, A., Harvan, M.: SNMP Trace Analysis

Definitions. Internet Draft (work in progress) <draft-schoenw-nmrg-snmp-trace-
definitions-02.txt>, University of Twente, Jacobs University Bremen, ETH Zurich
(April 2008)


