
Shifting Primes: Extension of pseudo-Mersenne
primes to optimize ECC for MSP430-based

Future Internet of Things devices

Leandro Marin, Antonio J. Jara, and Antonio F. G. Skarmeta

Computer Science Faculty,
University of Murcia, Murcia, Spain
{leandro,jara,skarmeta}@um.es

Abstract. Security support for small and smart devices is one of the
most important issues in the Future Internet of things, since technolo-
gies such as 6LoWPAN are opening the access to the real world through
Internet. 6LoWPAN devices are highly constrained in terms of compu-
tational capabilities, memory, communication bandwidth, and battery
power. Therefore, in order to support security, it is necessary to im-
plement new optimized and scalable cryptographic mechanisms, which
provide security, authentication, privacy and integrity to the communi-
cations. Our research is focused on the mathematical optimization of
cryptographic primitives for Public Key Cryptography (PKC) based on
Elliptic Curve Cryptography (ECC) for 6LoWPAN. Specifically, the con-
tribution presented is a set of mathematical optimizations and its imple-
mentation for ECC in the 6LoWPAN devices based on the microproces-
sor Texas Instrument MSP430. The optimizations presented are focused
on Montgomery multiplication operation, which has been implemented
with bit shifting, and the definition of special psudo-Marsenne primes,
which we have denominated ”shifting primes”. These optimizations allow
to implement the scalar multiplication (operation used for ECC opera-
tions) reaching a time of 1, 2665 seconds, which is 42, 8% lower of the
reached by the state of the art solution TinyECC (2, 217 seconds).

Keywords: Security; 6LoWPAN; ECC; pseudo-Marsenne primes; shift-
ing prime; Internet of Things

1 Introduction

Security is one of the major issues for the current digital society. The evolution
of hardware technologies with the development of new devices such as wireless
personal devices, embedded systems and smart objects, and the evolution of the
services with the definition of cloud computing, online services, and ubiquitous
access to the information are defining an extension of the capabilities of the
current Internet, what make feasible to connect to Internet the objects and
devices which are found surround us, it is the so-called Internet of things (IoT).
IoT allows that systems can get a total control and access to another systems

2 Leandro Marin, Antonio J. Jara, and Antonio F. G. Skarmeta

for leading to provide ubiquitous communication and computing. Thereby a new
generation of smart and small devices, services and applications can be defined.

These small and smart things with connectivity and communication capacity
from the IoT are what can be found, since some years ago, in the Low-power
Wireless Personal Area Networks (LoWPANs). IETF 6LoWPAN working group
has defined, in the RFC4944 [1], the standard to support IPv6 over that LoW-
PANs (6LoWPAN), in order to provide the technological basis for extending the
Internet to small devices. 6LoWPAN offers to the LoWPANs advantages from
the Internet Protocol (IP) such as scalability, flexibility, ubiquity, openness, and
end-to-end connectivity. It could be considered that 6LoWPAN devices are also
empowered with derived IP protocols, i.e., protocols for mobility such as MIPv6,
management such as SNMP, and security such as IPSec. However it is not fea-
sible, since 6LoWPAN nodes are highly constrained in terms of computational
capabilities, memory, communication bandwidth, and battery power.

Therefore, with the mentioned constrains, it is a challenge to implement
and use the cryptographic algorithms and protocols required for the creation
of security services. Nowadays, 6LoWPAN security is based on Symmetric Key
Cryptography (SKC) which is directly supported by specific hardware in the
microprocessor. SKC is suitable to offer local solutions, such as were originally
designed these personal area networks and local solutions such as location [2],
but for the future internet, it is required a higher scalability. For that reason,
Public Key Cryptography (PKC) needs to be supported, Specifically, our re-
search is focused on Elliptic Curve Cryptography for 6LoWPAN devices based
on MSP430.

The MSP430 has been chosen since it is one of the most extended micropro-
cessors in the Internet of Things devices and embedded systems. It is used for
6LoWPAN devices such as the Tmote Sky, for active Radio Frequency Identifi-
cation (RFID) [3], and new hybrid technologies such as DASH7 [4].

The mathematical optimization of cryptographic primitives has been widely
mentioned from a general point of view, and also for constrained devices. An
overview of the state of the art is carried out in Section 2. From all the related
works, TinyECC [9] is one of the most relevant references about ECC imple-
mentations for devices such as the based on MSP430. TinyECC chose Barret
algorithm for reduction modulo p, but it has been demonstrated, in our previous
work [16], that Montgomery multiplication is more suitable for these devices.

In this paper is presented an evolution of the mentioned previous work with
the inclusion of special primes, which reduce almost to the half the cycles needed
for Montgomery multiplication. The selection of special primes is a very extended
technique, for example in FIPS 186-3 are recommended special primes for ellip-
tic curve, called generalized Mersenne numbers, for which modular arithmetic
is optimized for processors that use 32 or 64 bits operations, see [18, Section
D.2]. Our advance has been to determinate the ideal primes for Montgomery
multiplication based on the optimizations defined for 16-bits microprocessors.

In conclusion, this paper proposes an implementation of multiplication oper-
ation for ECC based on bit shifting, presented in Section 3, instead of the micro-

Shifting primes to optimize ECC for MSP430-based devices 3

processor’s multiplication operation for microprocessor, which has not hardware
support for multiplication operation such as MSP430. In addition, this has de-
fined specific pseudo-Mersenne primes, which offer a simplification of the Mont-
gomery multiplication implementation based on bit shifting, which have been
denominated shifting primes, presented in Section 4. Finally, all the optimiza-
tions are implemented in Section 5, and evaluated in Section 6.

2 Related works

The usual solutions for WSNs are based on Symmetric Key Cryptography (SKC),
but it is not suitable for the Future Internet of Things, since it is not scalable.
SKC requires that both the origin and destination share the same security cre-
dential (i.e. secret key), which is utilized for both encryption and decryption. As
a result, any third-party that does not have such secret key cannot access the
information exchange. The majority of WSNs, included 6LoWPAN, are based on
the IEEE 802.15.4 standard, which offers three levels of security: Hash Functions,
Symmetric Key Cryptography and both [8].

This work is focused on Public Key Cryptography (PKC), also known as
asymmetric cryptography, which is useful for secure broadcasting and authenti-
cation purposes, and this satisfies the scalability requirements from the Future
Internet of Things. It requires of two keys: a key called secret key, which has
to be kept private, and another key named public key, which is publicly known.
Any operation done with the private key can only be reversed with the pub-
lic key, and vice versa. These primitives provide the confidentiality, integrity,
authentication, and non-repudiation properties.

Public Key Cryptography was considered unsuitable for sensor node plat-
forms, but that assumption was a long time ago. The approach that made PKC
possible and usable in sensor nodes was Elliptic Curve Cryptography (ECC),
which is based on the algebraic structure of elliptic curves over finite fields.
Some studies has been carried out about RSA in reduced chips [12], but it was
non-viable. Therefore, PKC for small and smart devices is mainly focused on
ECC, since ECC presents lower requirements both in computation and memory
storage, due to its small key sizes and its simpler primitives [13].

The related works of the implementation of an efficient cryptographic al-
gorithm for constrained devices have been focus on the optimizations of the
multiplication operation, since it is the most expensive operation in RSA and
ECC algorithms. ECC implementation can be over either GF (2m) or GF (p), we
have focused on modular arithmetic, i.e. GF (p), since this has similar nature
to the arithmetic of the micro-controller used in the 6LoWPAN devices. How-
ever, some interesting approaches have been defined for ECC implementations
over GF (2m), for example [14] has showed that field multiplication is faster over
GF (2m) than in GF (p) for new suggested hardware implementations, where the
instructions set and arithmetic of the micro-controller are closer to GF (2m).

Some of the most known software implementations over modular arithmetic
for ECC are TinyECC [9, 10] and NanoECC [11], which implement ECC-based

4 Leandro Marin, Antonio J. Jara, and Antonio F. G. Skarmeta

operations. TinyECC adopted several optimization techniques such as optimized
modular reduction using pseudo-Mersenne primes, sliding window method, Ja-
cobian coordinate systems, in-line assembly and hybrid multiplication in order
to achieve computational efficiency. Realise, that the computational and mem-
ory requirements of these algorithms are not small (e.g. signature requires 19308
bytes ROM and 1510 bytes RAM for the MICAz, generating a signature in 2
seconds. and verifying it in 2.43 seconds), although the implementation of these
primitives is constantly evolving and improving.

3 Mathematical optimization based on bit shifting
instead of microprocessor’s multiplication operation

There is an important literature about the advantages of the Montgomery’s
representation for this calculation [16, 5, 6]. For that reason, it is used for both
solutions i.e. based on bit shifting and multiplication operation. The original
details of the Montgomery’s representation for can be found in [7], although
many other books or papers refer to it. Our solution is based on ECC, which
requires an integer size (k) of 160-bits, i.e. k = 160, R = 2160).

Montgomery representation has been chosen instead of other solutions, such
as the Barrett reduction used in TinyECC [9], since in Montgomery representa-
tion, the representation of the numbers a and b, which are going to be multiplied,
are aR and bR mod n (n is a prime for ECC). Addition and subtraction oper-
ations with these numbers do not cause problems since R is common factor.
The problem is coming with the multiplication operation, when aR and bR is
multiplied, the result is abR2, but what is required is abR. Therefore, it needs
to be reduced by factor R. The great advantage of Montgomery representation
is to carry out the reduction of the factor R during multiplication,

The multiplication operation is what consumes the higher part of the time,
since it is repeated thousands of times. For that reason, it is the part optimized
and discussed more in detail in the next subsections.

3.1 Bit shifting

Let a and b two integers in Montgomery representation. Then, aR and bR mod n
between 0 and n−1. They are stored in binary representation, i.e. aR =

∑
i ai2

i

and bR =
∑
i bi2

i.
It is calculated (aR)(bR)R−1 = (ab)R, therefore it is required to carry out k

right bit shifting (with k = 160).
Since that, modulus n is odd, because it is a prime in ECC. Thus, when it

is divided by 2 mod n, two options are defined: either it is even number and it
can be directly shifted, or it is odd number and consequently needs to add n, in
order to reach 0 in the least significant bit, in order to be able to shift it.

Multiplication process requires a variable to accumulate the current result,
we will call to that variable P , whose digits are P =

∑
i Pi2

i. Each one of the
digits Bi is multiplied by

∑
iAi2

i and divided by 2. As initially P is 0, if Bi = 0

Shifting primes to optimize ECC for MSP430-based devices 5

for some initial values, it can be ignored. Therefore, this starts directly by the
digit in the position i0, such that Bi0 = 1, and copy the value of Ai in Pi.

From the position i0, we can find in the next steps: Bi = 0 or 1. On the one
hand, when Bi = 0, it divides P by 2, and add n when P is odd. On the other
hand, when Bi = 1, then it adds the value of aR to P , before it is divided by 2.

To make a first estimation of the time, we consider that the probability to
find Bi = 1 or 0 is the same, i.e. 0, 5. Therefore, for each k bits of Bi, when it is
1, it needs to carry out an addition of k bits (i.e. addition of ai) and a division by
2 of P . Otherwise, when it is 0 only one right bit shifting is required. Therefore,
k divisions by 2 and k/2 additions. Since, each division by 2 is always a shifting
and, with probability 0.5, is also an addition of n. Therefore, the total time is:

k(d+ s/2) + (k/2)s = k(d+ s), where d is the time for k right bit shifting, and
s is the time for k bits addition.

Microprocessor MSP430 offers 16-bits operations. Therefore, additions and
bits shifting are carried out in blocks of 16 bits. α is the time for 16-bits additions
and shifting (usually 1 to 4 CPU cycle for bit shifting and 1 to 6 cycles for
additions, depends on access to memory and registers). The final time is:

2αk2/16 = αk2/8.

The program code of the bit shifting algorithm is presented in the Algo-
rithm 1. This has been programmed in assembler code with the other presented
optimizations. The assembled code is based on MSPGCC.

3.2 Microprocessor’s multiplication operation

Let an instruction from the microprocessor’s set of instructions to carry out
multiplication operation, which operates 2 registers of 16-bits and save the 32-
bits of the result in two registers of 16-bits. This instruction is simulated in
MSP430 chip, in [17, page. 478-480]. It is called µ to the time spent by that
operation, and α for the time of 16-bits additions and 16-bits shifting.

Let the next numbers to apply the multiplication aR =
∑
j Aj2

16j and bR =∑
j Bj2

16j . In this case, j values are between 0 and k/16, instead of between 0
and k. Therefore, for each multiplication of k bits, it needs to carry out k/16
16-bits multiplications and 2k/16 additions, getting the results in a variable of
k + 16-bits. Therefore, the time is equal to: (µ+ 2α)k/16.

For each step of the multiplication of aR and the digits of Bi, since multi-
plication is carried out in blocks of 16-bits, this needs to add the current result
with the previous one i.e. an addition of (a sum of two numbers k bits and 16
bits. Thus, α(k+ 1)/16 additions), then it needs to divide it by 216 mod n. It is
called δ to the time used for the division by 216.

The total time for each one of the 16 bits blocks (k/16 blocks, Bi) is (µ +

2α)k/16 + α(k + 1)/16 = µk+α(3k+1)
16 , and addition δ, i.e. the total time is:

µk2+α(3k+1)k
256 + kδ

16 .

6 Leandro Marin, Antonio J. Jara, and Antonio F. G. Skarmeta

Division of a number of k + 16 bits by 216 mod n is carried out adding n
until that the result is multiple of 216. If the last digit of n in base 216 is 1 the
process is simple, since the number of times to subtract n is indicated by the
last digit of the number to be divided by 216 mod n. Therefore the total time is:

δt = (µ+3α)k+α
16 .

δt is the ideal time, when n has been chosen such that its last digit is equal
to 1, in order to carry out in a simple way the division. In a general case, it
cannot be assumed that the value of the last digit of n is equal to 1, thus this
estimation is not realistic. But, Extended Euclidean algorithm can be used, in
order to fix the process pre-calculating the modular multiplicative inverse of the
last digit of n mod 216 and it can be used with the last digit of p. Therefore, it
is reached a more realist time:

δ = k
16 (µ+ 3α) + 2µ+ 2α.

This can be simplified considering that terms without k are not highly rel-
evant for the total time. Therefore δt and δ are very similar, in the order of
k
16 (µ+ 3α). Therefore, based on that expression and reducing terms that do not
have k2, the total time for microprocessor’s multiplication operation is:

M ' µk2

256 + (µ+3α)k2

256 = (2µ+3α)k2

256 .

Algorithm 1 Code based on Bit shifting

accumulator = 0
for i = 0 to k do

if Bi equals 1 then
accumulator = accumulator + A

end if
if accumulator is odd then

accumulator = (accululator + p)/2
else

accumulator = accumulator/2
end if

end for

3.3 Comparative between bit shifting and microprocessor’s
multiplication operation

The comparative between bit shifting and microprocessor’s multiplication oper-
ation shows us that in a general way bit shifting is better than microprocessor’s
multiplication operation, when the following equation is true:

αk2

8 < (2µ+3α)k2

256 ⇒ 32α < 2µ+ 3α⇒ 29
2 < µ

α .

Shifting primes to optimize ECC for MSP430-based devices 7

In conclusion, when the number of cycles to carry out microprocessor’s mul-
tiplication operation is more than 15 times the cycles to carry out addition or
bit shifting, it is preferable bit shifting solution. Since, MSP430 microprocessor’s
multiplication operation requires a big amount of clock cycles (150 cycles in the
MSP430), while the bit shifting and additions only needs between 1 and 4 cycles
for bit shifting and 1 and 6 cycles for addition, this depends on the access to
registers and memory, i.e. rrcR4, i.e. bit shifting for registers is just 1 cycle, but
rrc0(R1), which is bit shifting in the memory address with value R1 are 4 cycles.
The evaluation has presented that bit shifting is better than microprocessor’s
multiplication operation with a relation of when its cost is 15 times or less than
multiplication i,e, µ < 15α, and MSP430 has a µ/α between 38 and 150.

4 Shifting primes

Shifting primes are special pseudo-Mersenne primes for bit shifting Montgomery
multiplication. They have been defined under this work to optimize them for the
bit shifting implementation presented in the Section 3. The shifting primers are
formally defined as:

Definition 1. It is said that p is a shifting prime (of type α and λ), if p is a
prime and exists u such that: p = u · 2λ−α+1 − 1 and 2α−2 < u < 2α−1.

The parameter α denotes the length of the word for addition and λ the length
of the prime number. Our work is focused on the case α = 16 and λ = 160,
i.e. ECC with 160-bits key length in our MSP430-based 16-bits microprocessor.
Notice that if 2α−2 < u < 2α−1 then 2α−2+λ−α+1 − 1 < p < 2α−1+λ−α+1 − 1.
Therefore, 2λ−1 − 1 < p < 2λ − 1 and then p is λ-bits length.

The number of shifting primes depends on λ and α. For example, for α = 8
and λ = 160 there is only one (with u = 100). For α = 16 and λ = 160 there are
288 shifting primes.

The basic operations based on these special primes (shifting primes) for the
Montgomery multiplication presented in the Section 3 are presented in the next
subsection.

4.1 Basic operations

In order to implement the basic operations, it has been considered, in addition
to the mentioned, the next optimizations.

On the one hand, the points and coordinates, for an elliptic curve E over a
field is a nonsingular cubic curve, are defined over the projective plane. It has
been considered the field Zp with p a 160 bits prime, and E in Weierstrass normal
form, E : y2 = x3 + ax+ b. It has been considered the special case with a = −3,
which reduces the amount of operations. There are different coordinate systems
that can be used to represent the points. We consider the mixed coordinate
system considered in [6] for which the basic time for scalar multiplication is
1610.2M with M the time for a basic 160 bits modular multiplication mod

8 Leandro Marin, Antonio J. Jara, and Antonio F. G. Skarmeta

p, our focus in our research is optimize modular multiplication, since scalar
multiplication is based on this.

On the other hand, all the operations are implemented in assembler, where
one of the main decisions has been to use 10 registers to store a number (called
the accumulator) in which we make the basic bit shifting and additions. This
decision makes that only 2 registers are available for other operations, but it
is worth, since operations with the accumulator are very fast, and when the
accumulator is combined with the shifting primes, the result is also very quick.

Following the same methodology defined in the Section 3, there are three
main operations in Montgomery multiplication:

Division by 2 The most basic operation for Montgomery multiplication is
x 7→ x · 2−1 in Zp. Suppose x = x0 + x1 · 216 + ·+ x9 · · · 216·9 < p.

The usual algorithm for this operation is as follows:

if x is even then
result is shifting x one position to the left.

else
result is x+ p shifted one position to the left.

end if

Even when is being used the accumulator, it is needed 3 cycles to check if
x is odd and jump depending on it. Once we have decided that, it is needed 10
cycles to shift the accumulator in the best case, and 30 cycles to add a general
prime p and shift. This makes that this algorithm for a general prime requires
between 13 and 33 cycles with an optimal programming.

The algorithm for shifting primes is:

shift x
if no carry (i.e. if x was even) then

jump to (END), because the result is already in x.
end if
ignore the carry and add u to the most significant word of x.
(END) The result is in x

The result is clear when x is even. In case x is odd, if this shifts x, then
this gets (x − 1)/2 and this requires (x + p)/2. But, if u is added to the most
significant word of x, then the result reached is

(x− 1)/2 + u · 2λ−α =
x− 1 + u · 2λ−α+1

2
=
x+ p

2

It is exactly the result required. This is the advantage from the shifting
primes.

The number of cycles for this operation with this optimization is equal to:
10 cycles to shift x, 2 cycles for the jump, and another 2 cycles in case that it is
required to add u. Realise, that when x is between 0 and p, then (x+p)/2 is also
between 0 and p, and consequently it is not required any additional correction.
The total number of cycles is 12 in the even case and 14 in the odd case. This

Shifting primes to optimize ECC for MSP430-based devices 9

reduction is significant because this operation should be done λ times for a
Montgomery multiplication. Since, the probability for odd x is 0.5 the usual
algorithm would give 13 · 0.5 + 33 · 0.5 = 23 cycles and the one with shifting
primes 13 cycles. Therefore, a reduction of the 43, 47% of the cycles is reached.

Addition and correction modulo p Montgomery multiplication algorithm
requires to add the second operand to the accumulator depending on the value
of the bits of the first operand. In order to to keep the result between 0 and
p−1, when the addition is over this quantity, it is required to make a correction,
i.e. subtract p, to offer the result inside the range.

Adding a λ-bits variable to the accumulator requires a lot of cycles, because
the variable should be in memory. Specifically, it is required 10 additions add(c).w
mem,reg, where for each addition are required 3 cycles. Therefore, the whole
addition 30 cycles.

The correction for a general prime requires to compare the result with the
prime. In order to do it, this compares the significant word of the accumulator
with the most significant word of the prime (2 cycles), and then a jump (2 cycles)
is carried out to different places, depending on the result. There are two cases in
which the problem is clear (if the numbers are not equal). If they are equal, then
it needs to check the following values, since it is possible to require a correction
or not.

The mentioned correction is simpler in the case of shifting primes since:

Proposition 1. Let p be a shifting prime p = u·2λ−α+1−1 and a =
∑λ/α−1
i=0 ai2

αi

the accumulator after a partial sum in the Montgomery multiplication of x and
y. Then:

1. a cannot be exactly p.
2. a needs no correction if and only if the most significant word of a is under

2u.

Proof.

1. In Montgomery multiplication, the accumulator has partial products h · y.
If y 6= 0 the partial products cannot be 0 (or p, that is the same element in
Zp) and in case y is 0, the partial result would be always 0, not p.

2. The accumulator needs correction if and only if a ≥ p, that using (1) is
equivalent to a > p. Let k = λ/α− 1. Then:

a =

k∑
i=0

ai2
αi = ak2λ−α +

k−1∑
i=0

ai2
αi

p = 2u2λ−α − 1

The number
∑k−1
i=0 ak2αi is between 0 and 2λ−α − 1 because it is written

with k − 1 words. Therefore:

a > p⇔ ak2λ−α +

k−1∑
i=0

ai2
αi > 2u2λ−α − 1

10 Leandro Marin, Antonio J. Jara, and Antonio F. G. Skarmeta

⇔ (ak − 2u)2λ−α > −

(
k−1∑
i=0

ai2
αi + 1

)

The number −
(∑k−1

i=0 ai2
αi + 1

)
is negative, therefore if ak − 2u ≥ 0 we

have a > p. Conversely, if ak − 2u < 0 then ak − 2u ≤ −1. Therefore:

(ak − 2u)2λ−α ≤ −2λ−α ≤ −

(
k−1∑
i=0

ai2
αi + 1

)
.

This has been proved that the result needs correction if a > p and this is
equivalent to ak ≥ 2u. Then correction is required if and only if ak < 2u.

Addition with shifting and correction modulo p Following the Mont-
gomery multiplication algorithm, this requires after the addition, a shifting for
the following loop. It is usually better to consider both operations together be-
cause we can reduce the number of cycles avoiding a partial correction.

Suppose a is the accumulator and it required to calculate (a + w)2−160(p).
The algorithm is the following:

add w to a from right to left
shift a from left to right with carry without previous correction.
if no carry then

jump to (END)
end if
compare u with the most significant word of a.
if u is less than it then

add u to the most significant word of a and jump to (END)
end if
sub u to the most significant word of a and add 1 to the final result.

4.2 Assembler implementation and execution times

The previous algorithms and optimizations are implemented in the MSP430 with
the following conventions: It is used the register R5 for u, R4 for the address of
the operand, and 10 registers for the accumulator R6, R7, ..., R15.

DIV2

RRC.w R6
RRC.w R7
RRC.w R8
RRC.w R9
RRC.w R10
RRC.w R11

RRC.w R12
RRC.w R13
RRC.w R14
RRC.w R15
JNC end
ADD.w R5 , R6

end :

In DIV2 it is needed that the carry flag is 0 before executing these instruc-
tions. Therefore, an extra instruction CLRC is required to clear the carry bit.

Shifting primes to optimize ECC for MSP430-based devices 11

The execution time is 12 cycles, when no carry and 13 cycles in the other case
(probability 0.5). Therefore, this code needs 12.5 cycles.

In modADD R4, it is needed 30 cycles for the addition to the accumulator, 2
cycles to check if there is carry overflow. The probability of correction is around
0.5, therefore we are going to calculate both cases. If there is no correction, then
it compares R6 with 2u (2 cycles) and jump to the end (2 cycles). This is equal
to 30 + 2 + 2 + 2 = 36 cycles. Otherwise, when correction is required, the highest
probability if that carry bit is active after the addition, in that case, it is needed
30 + 2 + 1 + 2 + ε = 35 + ε cycles, where ε is a part of the code with very low
probability. In conclusion, the average cycles needs for this code are 36 cycles.

modADD R4

ADD.w 18(R4) , R15
ADDC.w 16(R4) , R14
ADDC.w 14(R4) , R13
ADDC.w 12(R4) , R12
ADDC.w 10(R4) , R11
ADDC.w 8(R4) , R10
ADDC.w 6(R4) ,R9
ADDC.w 4(R4) ,R8
ADDC.w 2(R4) ,R7
ADDC.w 0(R4) ,R6
JC reqC
CMP.w R6 , 2 u
JL end

reqC : SUB.w 2u , R6
ADD.w #1,R15
JNC end
ADD.w #1,R14
ADDC.w #0,R13
ADDC.w #0,R12
ADDC.w #0,R11
ADDC.w #0,R10
ADDC.w #0,R9
ADDC.w #0,R8
ADDC.w #0,R7
ADDC.w #0,R6

end :

modADD+DIV2 R4

ADD.w 18(R4) , R15
ADDC.w 16(R4) , R14
ADDC.w 14(R4) , R13
ADDC.w 12(R4) , R12
ADDC.w 10(R4) , R11
ADDC.w 8(R4) , R10
ADDC.w 6(R4) ,R9
ADDC.w 4(R4) ,R8
ADDC.w 2(R4) ,R7
ADDC.w 0(R4) ,R6
RRC.w R6
RRC.w R7
RRC.w R8
RRC.w R9
RRC.w R10
RRC.w R11
RRC.w R12
RRC.w R13
RRC.w R14
RRC.w R15

JNC end
CMP.w R5 , R6
JNC pre
SUB.w R5 , R6
ADD.w #1,R15
JNC end
ADD.w #1,R14
ADDC.w #0,R13
ADDC.w #0,R12
ADDC.w #0,R11
ADDC.w #0,R10
ADDC.w #0,R9
ADDC.w #0,R8
ADDC.w #0,R7
ADDC.w #0,R6
JMP end

pre : ADD.w R5 , R6
end :

In conclusion, it is required addition and shift. If the accumulator is even
(probability is 0.5), then it is required 42 cycles, else it is 4 cycles in case that is
required to add p and 7 + ε in case that it has that subtracts p. Therefore, the
final cost is 42 + 0.5(4 + 0.5(3 + ε)) ≡ 45 cycles.

5 Bit shifting and shifting primes

The Section 4 has described the advantages for the Montgomery multiplication
with the defined shifting primes. This section describes the union of the presented
bit shifting implementation in the Section 3 and the mentioned shifting primes.
Finally, some additional optimizations have defined for the whole process.

12 Leandro Marin, Antonio J. Jara, and Antonio F. G. Skarmeta

The operations on elliptic curves have been studied extensively and optimized
for very different architectures. The basic operation with elliptic curves is the
scalar multiplication n×P , where P is a point on the curve, and n is a number
of large size. This operation is deeply analysed in [6], where is defined that the
cost of the scalar multiplication for primes of 160-bits requires 1610, 12 modular
multiplications of 160-bit numbers. Therefore, modular multiplication is what is
being optimized in this work.

Such as mentioned in the related works, Section 2, there are several al-
ternatives for the implementation of the modular multiplication. For example,
TinyECC solution is based on Barrett reduction [9]. For our solution, it has
been chosen Montgomery representation, since this is more suitable to exploit
the advantages from the shifting primes.

Let x and y, which are the multiplication operands and p, a shifting prime
for a determined u.

A basic implementation of the Montgomery multiplication with the shifting
primes requires the following steps:

1. Traverse bit by bit the operand x.
2. If it is found a bit with value equal to 0, then the accumulator is rotated,

i.e. (operation DIV2).
3. Otherwise, if it is found with value equal to 1, then y is added to the accu-

mulator and the accumulator is also rotated (operation modADD+DIV2).

The cost of the operations DIV2 and modADD+DIV2 have been already men-
tioned in the Section 4.

For traversing x bit by bit has been used the next registers:

– 10 registers to store the accumulator, R6,R7,...,R15.
– 1 register to store u.
– 1 register to read the word of which is being traversed of x. Notice, that x

is composed by 10 words of 16 bits.
– In order to access to the right word of x, it is stored in the stack memory the

address of the last word which has been access of x increased in 2 memory
units, in order that it is pointing to the next word of x.

– In addition, it is also stored in the stack memory the address from the first
word of x.

– At the beginning of the loop to traverse the operand x, it is stored in the
register R5 the address of the first word of x, and then is used the following
code.

MOV.w 0(R5) ,R5
SETC
RRC R5

This code introduces a bit of control, which allows us to rotate the register
until that the result is equal to 0. When, the result is 0, that bit is ignored, since
it was introduced by us, with the presented code. Then, it is read the next word
of x. This technique allows to avoid the use of a counter to control when the
register has been fully traversed.

Shifting primes to optimize ECC for MSP430-based devices 13

For example, an example where is used that method is the next code, which
shows how to find the first bit which is equal to 1 of x.

ADD.w #18,R5
PUSH.w R5
SUB.w #20,R5
PUSH.w R5

next0 : MOV.w 2(R1) ,R5
CMP.w R5 , 0 (R1)
JZ end0
SUB.w #2 ,2(R1)
MOV.w 0(R5) ,R5
SETC

Loop0 : RRC R5
JNC Loop0
JZ next0

The jump to end0 is defined to finish returning the value 0, since it has read
all the operand and it has not been found any bit set to 1. The total number
of cycles is until 17 cycles for jumping to another word, considering that this
operation is required for each new word (i.e. each 16 bits), it can be considered
that is introduced 1.7 cycles by each bit of the operand.

Considering that the probability to find a bit set to either 1 or 0 are equal
to 0.5, it is obtained the following time:

1. If the bit is 1, then it is required 3 cycles to check it. In addition, it needs to
be checked the control bit, i.e. 2 additional cycles, and carry out an addition
with rotation, which are 45 cycles. In total 50 cycles with probability 0.5.

2. Otherwise, if the bit is 0, it is also required 3 cycles to check it, and 15.5
cycles to rotate it. In total 18.5 cycles with probability 0.5.

3. Therefore, the mean number of cycles per bit is equal to 25 + 9.25 = 34.25.
4. To the mentioned mean number of cycles needs to be added a jump, and the

checking of end of world. In total is equal to 38.
5. This mean number of cycles per bit needs to be multiplied by 160 bits.

Therefore, this results 6080 cycles, in addition this requires some pre-calculus
and function callings, that we have estimated in 6293 cycles. This results with
a clock speed equal to 8 Mhz from the MSP430,

1610 · 6293/8 · 106 = 1.2665 seconds.

This implementation offers better results than other implementations based
on other types of primes. For example, notice that this operation with TinyECC
has a cost to encrypt or decrypt, where is used the scalar multiplication of 3, 271
seconds and 2, 217 seconds respectively. These operations can be carried out with
our implementation in around 1, 2665 seconds with shifting primes.

6 Results and Evaluation

The evaluation of the algorithms optimized has been initially simulated over
our own developed simulator, which verifies the results with the cryptographic
library LiDIA, and finally evaluated over real motes, specifically over Tmote Sky
with the Contiki 2.4 OS, where is defined a set of functions with assembler code
inline.

14 Leandro Marin, Antonio J. Jara, and Antonio F. G. Skarmeta

The quickest ECC algorithm is based on Montgomery + window method,
see [6, 16]. This has been optimized for MSP430 with bit shifting in assembler
language for the Montgomery multiplication of 160 bits and for the arithmetic
advantages from the defined shifting prime. Modular Montgomery multiplication
is carried out in 6293 cycles, and consequently scalar Montgomery in around 1610
times the modular Montgomery multiplication. The time reach, considering the
8 Mhz MSP430 microprocessor found in the Tmote Sky, is:

1610 · 6293/8 · 106 = 1.2665 seconds.

In order to reach this solution, we have used 10 microprocessor’s registers
to keep the 160 bits variable (the accumulator) with the partial multiplication
results, with this optimization we have reduced almost the 40% of the total
number of cycles, since rrc operation for bit shifting, and add operation for
addition spend 1 cycle and 3 cycles respectively, instead of 4 and 6. In addition,
loops have been unrolled in order to optimize more the final assembler code.
Finally, such as mentioned special primes have defined in order to optimize the
modular Montgomery multiplication, moving from a number of cycles for 12480
following the optimization from the Section 3 to 6293 cycles, i.e. from around
2, 5 seconds similar to TinyECC, which lower time is 2, 217 seconds to 1, 2665
seconds which is a 42, 8% lower than TinyEcc and our previous work [16].

7 Conclusions and Future Work

Future Internet of Things is defining a new set of challenges in order to offer
security support, since technologies such as 6LoWPAN offers Internet connec-
tivity to small and smart devices with highly constrained resources. Therefore,
it is necessary to provide efficient, scalable, and suitable security mechanisms.
For that reason, it is required Public Key Cryptography (PKC). This work has
evaluated and optimized Elliptic Curve Cryptography (ECC) implementation
for Future Internet of Things devices based on the Texas Instrument MSP430
microprocessor, which is used for several Future Internet of Things devices.

The optimizations for ECC are based mainly on bit shifting implementa-
tion of the modular Montgomery multiplication, and in a special type of primes
(shifting primes) defined under this work, which offer a set of arithmetic ad-
vantages for the implementation of the bit shifting based modular Montgomery
multiplication.

The result reached with the mentioned optimizations is 1, 2665 seconds for
the scalar Montgomery multiplication, which reduces a 42, 8%, with respect to
the TinyECC implementation which offers a result of 2, 217 seconds. Therefore,
it can be concluded, that with the reached time, ECC is suitable for the Future
Internet of Things.

Finally remark, selection of special primes is a very well-known technique,
which does not mean any vulnerability or weakness for our systems, e.g. stan-
dards such as FIPS 186-3 recommends specific elliptic curves for which modular
arithmetic is simpler for 32 and 64 bits microprocessors. Therefore, our advance

Shifting primes to optimize ECC for MSP430-based devices 15

has been to determinate the ideal primes for Montgomery multiplication based
on bit shifting operations and the 16-bits MSP430 microprocessor.

Ongoing work is focused on carry out additional optimizations based on
reduction of the number of additions accessing to blocks of 4 bits in each step,
instead of bit by bit, and the use of pre-calculated values.

References

1. Montenegro, G.; Kushalnagar, N.; Hui, J.; Culler, D.; Transmission of IPv6 Packets
over IEEE 802.15.4 Networks, RFC4944, 2007.

2. Nobles, P.; Ali, S.; Chivers, H. Improved Estimation of Trilateration Distances for
Indoor Wireless Intrusion Detection, Journal of Wireless Mobile Networks, Ubiqui-
tous Computing, and Dependable Applications, 2(1), ISSN: 2093-5374, 2011.

3. Zampolli, S.; Elmi, I.; et al; Ultra-low-power components for an RFID Tag with
physical and chemical sensors, Journal of Microsystem Technologies, Springer, pp.
581-588, Vol. 14, No. 4, 2008.

4. Norair, J.P.; DASH7: ultra-low power wireless data technology, 2009.
5. Cohen, H.; Miyaji, A.; Ono, T.; Efficient Elliptic Curve Exponentiation. Advances

in Cryptology -Proceedings of ICICS’97, (LNCS 1334), Springer-Verlag, 1997.
6. Cohen, H.; Miyaji, A.; Ono, T.; Efficient Elliptic Curve Exponentiation Using Mixed

Coordinates. Advances in Cryptology, (LNCS 1514), 51-65, Springer-Verlag, 1998.
7. Montgomery, P.; Modular Multiplication Without Trial Division, Math. Computa-

tion, vol. 44, pp. 519-521, 1985.
8. 802.15.4-2003, IEEE Standard, Wireless medium access control and physical layer

specifications for low-rate wireless personal area networks, May 2003.
9. Liu, A.; Ning, P.; TinyECC: A Configurable Library for Elliptic Curve Cryptog-

raphy in Wireless Sensor Networks, 7th International Conference on Information
Processing in Sensor Networks, SPOTS Track, USA, pp. 245-256, 2008.

10. Seo, S.C.; Han, D.G.; et al; TinyECCK: Efficient Elliptic Curve Cryptography
Implementation over GF(2m) on 8-bit MICAz Mote. IEICE Transactions on Info
and Systems E91-D(5), 1338-1347, 2008.

11. Szczechowiak, P; Oliveira, L.B.; et al; NanoECC: Testing the Limits of Elliptic
Curve Crytography in Sensor Networks, UNICAMP, Brasil, 2008.

12. Gura, N.; Patel, A.; et al; Comparing Elliptic Curve Cryptography and RSA on
8-bit CPUs. Workshop on Cryptographic Hardware and Embedded Systems, 2004.

13. Hitchcock, Y.; Dawson, E.; et al; Implementing an efficient elliptic curve cryp-
tosystem over GF(p) on a smart card, ANZIAM Journal, 2003.

14. Uhsadel, L.; Poschmann, A.; Paar, C.; Enabling Full-Size Public-Key Algorithms
on 8-bit Sensor Nodes. European Workshop on Security and Privacy in Ad hoc and
Sensor Networks, 2007.

15. Hodjat, A.; Batina, L.; et al; HW/SW Co-Design of a Hyperelliptic Curve Cryp-
tosystem using a Microcode Instruction Set Coprocessor Integration, VLSI Journal
40(1), pp.45-51, 2007.

16. Ayuso, J.; Marin, L.; Jara, A.; Skarmeta, A.F.G.; ”Optimization of Public Key
Cryptography (RSA and ECC) for 8-bits Devices based on 6LoWPAN”, 1st Inter-
national Workshop on the Security of the Internet of Things, Tokyo, Japan, 2010.

17. Bierl, L.; MSP430 Family Mixed-Signal Microcontroller Application Reports,
http://focus.ti.com.cn/cn/lit/an/slaa024/slaa024.pdf, pp. 478-480, 2000.

18. Locke, G.; Gallagher, P; ”FIPS PUB 186-3: Digital Signature Standard (DSS)”,
National Institute of Standards and Technology, 2009.

