
A Foundation for Requirements Analysis of Privacy
Preserving Software∗

Kristian Beckers, Maritta Heisel

paluno - The Ruhr Institute for Software Technology – University of Duisburg-Essen
{firstname.lastname}@paluno.uni-due.de

Abstract. Privacy requirements are difficult to elicit for any given software en-
gineering project that processes personal information. The problem is that these
systems require personal data in order to achieve their functional requirements
and privacy mechanisms that constrain the processing of personal information in
such a way that the requirement still states a useful functionality.
We present privacy patterns that support the expression and analysis of differ-
ent privacy goals: anonymity, pseudonymity, unlinkability and unobservability.
These patterns have a textual representation that can be instantiated. In addition,
for each pattern, a logical predicate exists that can be used to validate the instan-
tiation. We also present a structured method for instantiating and validating the
privacy patterns, and for choosing privacy mechanisms. Our patterns can also be
used to identify incomplete privacy requirements. The approach is illustrated by
the case study of a patient monitoring system.

Keywords: privacy, common criteria, compliance, requirements engineering

1 Introduction

Westin defines privacy as “the claim of individuals, groups, or institutions to determine
for themselves when, how, and to what extent information about them is communicated
to others” [1]. A number of guidelines for privacy are available. The Fair Information
Practice Principles – or short FIPs) [2] – are widely accepted, which state that a per-
son’s informed consent is required for the data that is collected, collection should be
limited for the task it is required for and erased as soon as this is not the case anymore.
The collector of the data shall keep the data secure and shall be held accountable for any
violation of these principles. The FIPs were also adapted into the Personal Information
Protection and Electronic Documents Act in Canada’s private-sector privacy law. In the
European Union the EU Data Protection Directive, Directive 95/46/EC, does not per-
mit processing personal data at all, except when a specific legal basis explicitly allows it
or when the individuals concerned consented prior to the data processing [3]. The U.S.
have no central data protection law, but separate privacy laws, e.g., the Gramm-Leach-
Bliley Act for financial information, the Health Insurance Portability and Accountabil-
ity Act for medical information, and the Children’s Online Privacy Protection Act for
∗

This research was partially supported by the EU project Network of Excellence on Engineering
Secure Future Internet Software Services and Systems (NESSoS, ICT-2009.1.4 Trustworthy
ICT, Grant No. 256980).



2 Kristian Beckers, Maritta Heisel

data related to children [4]. These legal guidelines must be implemented by any given
software system for which the guidelines apply.

However, in order to comply with these guidelines the privacy requirements for a
given software system have to be elicited. In order to do this we have to formulate
specific privacy goals. We use two distinct approaches that specify privacy terms that
can used for this purpose, namely the terminology by Pfitzmann and Hansen [5] and
the privacy specification in the ISO 15408 standard - Common Criteria for Information
Technology Security Evaluation (or short CC) [6]. Pfitzmann and Hansen [5] introduced
a terminology for privacy via data minimization. They define central terms of privacy
using items of interest (IOIs) , e.g., subjects, messages and actions. Anonymity means
that a subject is not identifiable within a set of subjects, the anonymity set. Unlinkability
of two or more IOIs means that within a system the attacker cannot sufficiently distin-
guish whether these IOIs are related or not. Undetectability of an IOI means that the
attacker cannot sufficiently distinguish whether it exists or not. Unobservability of an
IOI means undetectability of the IOI against all subjects uninvolved in it and anonymity
of the subject(s) involved in the IOI even against the other subject(s) involved in that
IOI. A pseudonym is an identifier of a subject other than one of the subject’s real names.
Using pseudonyms means pseudonymity. The CC contains the privacy requirements
anonymity, pseudonymity, unlinkability, and unobservability [6, pp. 118-125].

In this paper, we provide patterns for these privacy requirements, building on the
problem frame terminology, and we explain the difference between the privacy notions
in the CC and the Pfitzmann and Hansen terminology.

The rest of the paper is organized as follows. Section 2 presents the problem frame
approach, and Sect. 3 explains how to work with privacy patterns. We introduce our
patterns in Sect. 4 and illustrate them using a case study. Section 5 contains related
work, and Sect. 6 concludes.

2 Problem Frames

We use a problem frames approach to build our privacy patterns on, because problem
frames are an appropriate means to analyze not only functional, but also dependability
and other quality requirements [7, 8].

Problem frames are a means to describe software development problems. They were
proposed by Jackson [9], who describes them as follows: “A problem frame is a kind of
pattern. It defines an intuitively identifiable problem class in terms of its context and the
characteristics of its domains, interfaces and requirement.”. It is described by a frame
diagram, which consists of domains, interfaces between them, and a requirement. We
describe problem frames using class diagrams extended by stereotypes as proposed by
Hatebur and Heisel at Safecomp 2010 [10](see Fig. 1). All elements of a problem frame
diagram act as placeholders, which must be instantiated to represent concrete problems.
Doing so, one obtains a problem description that belongs to a specific kind of problem.

The class with the stereotype machine represents the thing to be developed (e.g.,
the software). The other classes with some domain stereotypes, e.g., CausalDomain
or BiddableDomain represent problem domains that already exist in the application
environment. Domains are connected by interfaces consisting of shared phenomena.



Foundations of Privacy Preserving Software 3

abbreviation: String
description: String

<<Stereotype>>
Domain

<<Stereotype>>
Biddable Domain

(uml)
Class

<<Stereotype>>
Machine

<<Stereotype>>
Lexical Domain

<<Stereotype>>
Causal Domain

<<Stereotype>>
Connection Domain

<<Stereotype>>
Display Domain

<<Stereotype>>
Designed Domain

Fig. 1. Inheritance Structure of different Domain Types

Shared phenomena may be events, operation calls, messages, and the like. They are
observable by at least two domains, but controlled by only one domain, as indicated by
an exclamation mark. These interfaces are represented as associations, and the name of
the associations contain the phenomena and the domains controlling the phenomena.

Jackson distinguishes the domain types CausalDomains that comply with some
physical laws, LexicalDomains that are data representations, and BiddableDomains
that are usually people. According to Jackson, domains are either designed, given, or
machine domains. The domain types are modeled by the subclasses BiddableDomain,
CausalDomain, and LexicalDomain of the class Domain. A lexical domain is a special
case of a causal domain. This kind of modeling allows one to add further domain types,
such as DisplayDomains as introduced in [11] (see Fig. 1).

Problem frames support developers in analyzing problems to be solved. They show
what domains have to be considered, and what knowledge must be described and rea-
soned about when analyzing the problem in depth.

Software development with problem frames proceeds as follows: first, the environ-
ment in which the machine will operate is represented by a context diagram. Like a
frame diagram, a context diagram consists of domains and interfaces. However, a con-
text diagram contains no requirements. Then, the problem is decomposed into subprob-
lems. If ever possible, the decomposition is done in such a way that the subproblems fit
to given problem frames. To fit a subproblem to a problem frame, one must instantiate
its frame diagram, i.e., provide instances for its domains, phenomena, and interfaces.
The instantiated frame diagram is called a problem diagram.

Since the requirements refer to the environment in which the machine must operate,
the next step consists in deriving a specification for the machine (see [12] for details).
The specification describes the machine and is the starting point for its construction.

3 Working with Privacy Patterns

We developed a set of patterns for expressing and analyzing privacy requirements,
which are presented in more detail in Sect. 4. An important advantage of these patterns
is that they allow privacy requirements to be expressed without anticipating solutions.
For example, we may require data to be anonymized before these are transmitted with-
out being obliged to mention k-Anonymity [13], which is a means to achieve anonymity.

The benefit of considering privacy requirements without reference to potential so-
lutions is the clear separation of problems from their solutions, which leads to a better



4 Kristian Beckers, Maritta Heisel

ex
te

rn
al

 
in

pu
t

m
et

ho
d

privacy threats

in
pu

t/
ou

tp
ut

Describe the 
environment

context 
diagram

Instantiate 
privacy 
patterns

Validate the 
instantiated 

privacy 
pattern 

Check if 
privacy 

requirements 
are complete

instantiated
privacy 
patterns

privacy patterns

validated 
privacy 
patterns

complete set 
of privacy 
requirements

Choose
 privacy 

mechanisms

privacy 
mechanisms

functional 
requirements

Fig. 2. A Method for Using Privacy Patterns

understanding of the problems and enhances the re-usability of the problem descrip-
tions, since they are completely independent of solution technologies.

We provide a method for privacy requirements elicitation using our privacy patterns.
The entire method is depict in Fig. 2. This approach helps to elicit and complete privacy
requirements within a given software engineering process. We use the resulting set of
requirements to choose privacy-enhancing mechanisms.

The first step in our method is to describe the environment, because privacy re-
quirements can only be guaranteed for a specific intended environment. For example,
a software may preserve privacy of its users in a social media setting, where it is only
exchanging information about concert tickets, but not for a medical setting exchanging
more sensible information about the health status of its stakeholders. This step results
in a context diagram (see Sect. 2) of the intended software system.

We apply our patterns after a privacy threat analysis has been conducted, e.g., ac-
cording to the PIA method of the Australian Government [14], and functional require-
ments of the system have been elicited. The requirements describe how the environment
should behave when the machine is in action. The description of the requirements must
consist of domains and phenomena of the environment description. The functional re-
quirements and privacy threats, as well as our privacy patterns are used to instantiate
privacy patterns. For each privacy threat, a textual representation of a privacy pattern is
instantiated using the context diagram. This results in an initial set of privacy require-
ments. These are linked to the previously described functional requirements.

The next step is to validate the instantiated privacy patterns using the corresponding
privacy predicates. Our privacy requirements patterns are expressed in natural language
and logical predicates. The natural text has parts written in bold, which have to be in-
stantiated with domains of a context diagram for the system. These present a structured
analysis of the required elements in order to specify the requirement. In addition, the
logical predicates refer to domain types in a context diagram that have a kind-of rela-
tionship to the domains in the natural language pattern. This allows us to check if the
instantiated domains have the correct domain types.

Privacy requirements are separated from functional requirements. On the one hand,
this limits the number of patterns; on the other hand, it allows one to apply these pat-



Foundations of Privacy Preserving Software 5

terns to a wide range of problems. For example, the functional requirements for data
transmission or automated control can be expressed using a problem diagram. Privacy
requirements for anonymity, unlinkability, unobservability, and pseudonymity can be
added to that description of the functional requirement, as shown in Sect.4.

The predicate patterns are expressed using the domain types of the meta-model
described in Figure 1, i.e., Domain, BiddableDomain, CausalDomain, and Lexical-
Domain. From these classes in the meta-model, subclasses with special properties are
derived. We explain the domain types that are relevant for this step in the method:

– A Stakeholder is a BiddableDomain (and in some special cases also a CausalDo-
main) with some relation to stored or transmitted personal information. It is not
necessary that a stakeholder has an interface to the machine.

– A CounterStakeholder is a BiddableDomain that describes all subjects (with their
equipment) who can compromise the privacy of a Stakeholder at the machine. We
do not use the term attacker here, because the word attacker indicates a malicious
intent. Privacy of stakeholders can also be violated by accident.

– PersonalInformation is a CausalDomain or LexicalDomain that represents per-
sonal information about a Stakeholder. The difference between these domains is
that a LexicalDomain describes just the stored information, while a CausalDo-
main also includes the physical medium the data is stored upon, e.g., a hard drive.

– StoredPersonalInformation is PersonalInformation, which is stored in a fixed
physical location, e.g., a hard drive in the U.S.

– TransmittedPersonalInformation is PersonalInformation, which is transmitted
in-between physical locations, e.g., data in a network that spans from Germany
to the U.S.

– InformationAboutPersonalInformation is is a CausalDomain or LexicalDomain
that represents information about PersonalInformation, e.g., the physical location
of the name and address of a stakeholder.

The check if privacy requirements are complete is a check that all the textual gaps are
instantiated. For example, a requirement that has to be instantiated with a Stakeholder
has to name an instance of a biddable domain from the context diagram, e.g., Patients.
Several privacy patterns require instantiation with sets of biddable domains. For ex-
ample, a privacy pattern might not only be directed towards Patients, but also towards
Visitors of patients. In this case we can reason for all biddable domains in the context
diagram if they are a Stakeholder or not.

In addition, a requirement might be missing, e.g. because of an incomplete threat
analysis. In order to execute this check all personal information in the system has to
be elicited. For each CausalDomain or LexicalDomain, we have to check if these are
StoredPersonalInformation, TransmittedPersonalInformation or InformationAbout-
PersonalInformation. If this is the case, we check if these were considered in the pri-
vacy threat analysis. If this is not the case, we have to re-do the privacy threat analysis
and start our process again.

The last step of our approach is to choose a privacy mechanism that solves the prob-
lem. For example, to achieve pseudonymity, a privacy-enhancing identity management
systems [15] can be chosen.



6 Kristian Beckers, Maritta Heisel

<<contextDiagram,technicalContextDiagram>>
PMS_environment

<<biddableDomain>>
Patient

<<causalDomain,connectionDomain>>
O2Sensor

<<causalDomain,connectionDomain>>
HearbeatSensor

<<causalDomain,connectionDomain>>
InfusionPump

<<machine>>
PatientMonitoringSystem

<<causalDomain,connectionDomain>>
Terminal

<<lexicalDomain>>
Configuration

<<biddableDomain>>
Nurse

<<biddableDomain>>
Administrator

<<biddableDomain>>
LocalPhysician

<<lexicalDomain>>
MonitoringData

<<causalDomain,connectionDomain>>
RemoteAccessTerminal

<<lexicalDomain>>
MedicalHistory

<<biddableDomain>>
Researcher<<biddableDomain>>

Vendor

P!{O2Saturation,Pulse}
<<physical>>

P!{InfusionFlow}
<<physical>>

MH!{history}
<<connection>>

P!{Heartbeat}
<<physical>> HS!{Heartbeat}

<<wireless>>

IP!{InfusionFlow}
<<wireless>>

T!{Alarm,VitalSigns},
LP!{config,history,data}

<<gui>>

RAT!{status},
V!{update,repair}

<<gui>>

PMS!{Alarm,VitalSigns},T!{config,history,data}
<<wireless>>

T!{Alarm,VitalSigns}
<<gui>>

A!{maintain}
<<gui>>

PMS!{VitalSigns}
<<lan>>

RAT!{VitalSigns}
<<gui>>

OS!{O2Saturation,Pulse}
<<wireless>> C!{limits}

<<connection>>
MD!{VitalSigns}
<<connection>>

Fig. 3. Patient Monitoring System Context Diagramm

4 Privacy Patterns

We illustrate our method with the development of a patient monitoring system (PMS),
which monitors the vital signs of patients, reports these to physicians and nurses, and
controls an infusion flow according to specified rules. The context diagram of the sys-
tem is shown in Fig. 3. The configuration is stored in a database of the system, as well
as the monitoring data of each patient over time and the medical history of each patient.
This history shall help physicians to determine the correct settings for the PMS. Nurses
and physician have access to alarm messages of the system and the information about
the vital signs of patients. An administrator has access to the system for maintenance
purposes. The system also allows a remote access for the vendor in order to receive
status messages and send updates or repair the system. In addition, the system provides
information of monitored data to researchers. The privacy threat to be avoided is that
a counterstakeholder reveals personal information of the patient to one or more unau-
thorized persons.1 Examples for the described environment are the properties of the
infusion pump and the heartbeat and O2 flow sensors. Further examples are the assumed
opportunities of a counterstakeholder to gather personal information about patients and
to distribute it. A possible counterstakeholder can be a stakeholder of the system. In
addition, we assume here that a counterstakeholder, who is not also a stakeholder of the
system, can only access the WAVE/WLAN interface. Stakeholders and counterstake-
holders are biddable domains in the context diagram shown in Fig. 3. The elicitation of
stakeholders and counterstakeholders from biddable domains is part of the instantiation
process. Hence, the reasoning of which biddable domain is either a stakeholder or coun-
terstakeholder or both is essential. The information from the privacy threat serves as a

1 The privacy threat analysis is left out here.



Foundations of Privacy Preserving Software 7

support in this task. The functional requirement of the PMS is to keep the infusion
flow controlled according to the configuration.

R1 The PMS shall control the infusion flow of a Patient using the InfusionPump ac-
cording to the Configuration given by a Physician based upon the vital signs of the
Patient, which are transmitted using a wireless network (WAVE/WLAN interface).

R2 The PMS should raise an alarm for Physicians and Nurses using the Terminal, if
the vital signs of a Patient exceed the limits defined in the Configuration.

R3 Physicians can change the Configuration, according to the MonitoringData of
the vital signs and the MedicalHistory of a Patient in the PMS using the Terminal,
which sends the Configuration to the PMS using a wireless network (WAVE/WLAN
interface).

R4 Researchers can use the collected data about Patients’ vital signs for a long term
medical study using the RemoteAccessTerminal that sends the data over a wired
network (LAN interface) from the PMS. The Vendor can query the status of the
PMS and send patches to the PMS using the RemoteAccessTerminal.

R5 Administrators can use the Terminal to maintain the PMS.

We instantiate privacy requirements as a next step. We describe privacy patterns as
textual patterns. The parts of the pattern’s textual description printed in bold and ital-
ics should be instantiated according to the concrete problem. Hence, the instantiation
should use only domains from the context diagram. We complement the textual de-
scription of the patterns with predicates. They must be described in such a way that it is
possible to demonstrate that the privacy predicate holds for all objects of this class. The
instantiated predicates are helpful to analyze conflicting requirements and the interac-
tion of different privacy requirements, as well as for finding missing privacy require-
ments.

4.1 Anonymity

For the functional requirement R4, we formulate a privacy requirement for anonymity.
The textual pattern for anonymity requirements is:

Preserve anonymity of Stakeholders and prevent disclosure of their identity by
CounterStakeholders.

The privacy requirement pattern can be expressed by the anonymity predicate:

anoncs : BiddableDomain × PBiddableDomain→ Bool

The suffix “cs” indicates that this predicate describes a requirement considering a cer-
tain CounterStakeholder. The definition of anonymity by Pfitzmann and Hansen [5]
states that a stakeholder shall not be identifiable from a set of stakeholders. This is the
so-called anonymity set, which is represented in our pattern by a biddable domain and
in turn a specific type of biddable domain called Stakeholder. We interpret a domain
according to Jackson [9] also as a set. Hence, all the persons that are Stakeholders used
to instantiate the anonymity pattern form the anonymity set. The second argument of



8 Kristian Beckers, Maritta Heisel

the predicate anoncs must be instantiated with a set of biddable domains, because we
might have more than one kind of counterstakeholder. We analyze the context diagram
(see Fig. 3) for counterstakeholders that might gain personal information using the Re-
moteAccessTerminal. This leads to the Researcher.

Preserve anonymity of Patients and prevent disclosure of their identity by Re-
searchers.

In this case all instances of Patients are elements of the anonymity set.
We validate the instantiated privacy pattern by checking if predicate is instantiated
with domains belonging to the required domain types: The Patient is a biddable domain
and the Researcher is also a biddable domain, which forms the only member of the set
of counterstakeholder. Hence, the anonymity predicate is instatiated in a type-correct
way. As a next step we check if the privacy requirement is complete.

The counterstakeholders are a set of biddable domains. This demands that we in-
spect the context diagram (see Fig. 3) again for further possible counterstakeholders.
Another biddable domain has access to the RemoteAccessTerminal, the Vendor. There-
fore, we add the Vendor to the list of counterstakeholders. We choose a privacy mech-
anism as a final step for anoymity, e.g., based upon the work in [16].

anoncs : Patients × {Researcher ,Vendor}→ Bool

Common Criteria The common criteria divides requirements for anonymity into two
categories. The first one is just called anonymity and the second one is a refinement of
the first and called anonymity without soliciting information. The first demands from a
privacy mechanism that it shall ensure that a set of “users” or “subjects” are unable to
determine the “real name” related to a set of “subjects or operations or objects” [6, p.
119]. This demand is similar to the requirement above. The set of users is translated into
CounterStakeholders and subjects are Stakeholders. The second kind of anonymity the
CC considers is the so-called “anonymity without soliciting information” about the real
user name for a set of services and subjects [6, p. 119]. This requirement needs the first
requirements as a prerequisite.

We formulate an anonymity without soliciting personal information requirement :

Preserve anonymity of Stakeholders via not soliciting personal information
via ConstrainedDomains and, thus, prevent disclosure to certain Counter-
Stakeholders.

where a ConstrainedDomain is a CausalDomain or a ConnectionDomain that is con-
strained by a functional or privacy requirement.
The privacy requirement pattern can be expressed by the anonymity without soliciting
personal information predicate:

anonCCcs : BiddableDomain × PLexicalDomain × PConstrainedDomain
→Bool



Foundations of Privacy Preserving Software 9

The first kind anonymity requirement of the CC is instantiated with the requirement
stated above. We instantiate also the textual pattern for the second kind of requirement
using the context diagram. We instantiate the ConstrainedDomain with the RemoteAc-
cessTerminal and the personal information with MedicalHistory:

Preserve anonymity of Patients via not soliciting MedicalHistory via RemoteAc-
cessTerminal and, thus, prevent disclosure to Researchers and Vendors.

4.2 Unlinkability

The textual pattern for unlinkability requirements is:

Preserve unlinkability of two or more ConstrainedDomains for Stakeholders
and prevent CounterStakeholders of disclosing that the ConstrainedDomains
have a relation to the Stakeholder.

The privacy requirement pattern can be expressed by the unlinkability predicate:

unlinkcs : PCausalDomain × BiddableDomain × PBiddableDomain
→Bool

We also instantiate privacy requirements for the functional requirement R3. The fol-
lowing privacy requirement for unlinkability can be stated using the textual pattern:

Preserve unlinkability of Configurations, MonitoringData, and MedicalHis-
tory for a Patient and prevent Nurses and Administrators of disclosing that the
Configurations, MonitoringData, and MedicalHistory have a relation to the
Patient.

We again validate the instantiated privacy pattern by checking if predicate is in-
stantiated with domains belonging to the required domain types: The domains Config-
urations, MonitoringData, and MedicalHistory are lexical domains according to the
context diagram (see Fig. 3) and these are refined causal domains (see Fig. 1). The Pa-
tient is a biddable domain and Nurses and Administrators are also biddable domains.
Hence, the unlinkability predicate is instatiated in a type-correct way.

We check if the privacy requirement is complete. The LocalPhysician also has
access Terminal, but R3 states that the LocalPhysician requires access to these data.
Thus, LocalPhysicians are excluded from the unlinkability requirement. We choose a
privacy mechanism for unlinkability, e.g., based upon the work in [17].

Common Criteria The common criteria lists requirements for unlinkability of just
one category. This demands from a privacy mechanism that it shall ensure that a set of
“users” or “subjects” are unable to determine if “operations” are used by the same users
or have other recurring relations [6, p. 122].



10 Kristian Beckers, Maritta Heisel

4.3 Unobservability

The textual pattern for unobservability requirements is:

Preserve unobservability of ConstrainedDomains that are used by Stakeholders
and prevent CounterStakeholders from recognizing that the ConstrainedDo-
mains exist.

The privacy requirement pattern can be expressed by the unobservability predicate:

unobservcs : PCausalDomain × BiddableDomain × PBiddableDomain
→Bool

An example of an instantiated unobservability requirement is:

Preserve unobservability of a MedicalHistory that is used by LocalPhysicians
and prevent Administrator(s),Nurse(s) from recognizing that the MedicalHis-
tory exists.

Common Criteria The common criteria divides requirements for unobservability into
four categories. The first demands from a privacy mechanism that it shall ensure that a
set of “users” or “subjects” are unable to observe certain “operations” on “objects” [6,
p. 123-125]. This first requirements is equivalent to the requirement stated previously.

The second kind of unobservability the CC considers is the so-called “allocation of
information impact unobservability”. The CC demands a privacy mechanism that en-
sures that “unobservability related information” is distributed to different parts of the
machine, such that specific conditions hold, which ensure allocation of information im-
pact unobservability [6, p. 123-125]. The standard does not specify these conditions.
This kind of unobservability needs the first kind of unobservability requirement as a
prerequisite.

We formulate an allocation of information impact unobservability requirement:

Distribute InformationAboutPersonalInformation of Stakeholders on the ma-
chine, such that a CounterStakeholder cannot recognize its existence.

Specific conditions have to be derived in order to be able to check whether the require-
ment is fulfilled. The privacy requirement pattern can be expressed by the unobservabil-
ity related information predicate:

unobservRelInfcs : CausalDomain × BiddableDomain × PBiddableDomain
→Bool

The third kind of unobservability the CC considers is the so-called “unobservability
without soliciting information”. This demands unobservability without soliciting infor-
mation about personal information [6, p. 123-125].
We formulate an unobservability without soliciting personal information requirement:



Foundations of Privacy Preserving Software 11

Preserve unobservability without soliciting personal information of Stakeholders
via not soliciting PersonalInformation and, thus, prevent disclosure to a cer-
tain CounterStakeholder.

The privacy requirement pattern can be expressed by the unobservability without solic-
iting personal information predicate:

unobservWoSolcs : BiddableDomain × LexicalDomain × PBiddableDomain
→Bool

The fourth kind of unobservability the CC considers is the so-called “authorized user
observability”. The standard demands a solution that offers a list of “authorized users” that
can observe the usage of “resources and services” [6, p. 123-125].

We formulate an authorized user observability unobservability requirement :

Provide access of authorized Stakeholders to InformationAboutPersonalIn-
formation.

We also instantiate privacy requirements for the functional requirement R3. The pri-
vacy requirement pattern can be expressed by the unobservability related information
predicate:

unobservRelInfcs : PBiddableDomain × LexicalDomain→ Bool

4.4 Pseudonymity

A Pseudonym is a LexicalDomain used as an identifier of a Stakeholder without re-
vealing PersonalInformation. An Authorized User is a Stakeholder who is allowed to
know the identity of the Stakeholder the Pseudonym belongs to.

The textual pattern for pseudonymity requirements is:

Preserve pseudonymity of Stakeholders via preventing CounterStakeholders
from relating Pseudonyms to Stakeholders.

The privacy requirement pattern can be expressed by the pseudonymity predicate:

pseudocs : LexicalDomain × BiddableDomain × PBiddableDomain
→Bool

For the functional requirement R5, we formulate a privacy requirement for pseudonymity:

Preserve pseudonymity of Patients via preventing Administrators from relat-
ing Pseudonyms to Patients.



12 Kristian Beckers, Maritta Heisel

Common Criteria The common criteria divides requirements for pseudonymity into
three categories [6, p. 120-121]. The first demands from a privacy mechanism that it
shall ensure that a set of “users” or “subjects” are unable to determine the real user
name of “subjects or operations or objects” or “operations” or “objects”. In addition, the
privacy mechanism shall use “aliases” of the real user name for “subjects”. Moreover,
the privacy mechanism shall decide which “alias” the user gets assigned. The “alias” has
to conform to an “alias metric”. The following kinds of pseudonymity requirements
have the first kind of pseudonymity requirements as a prerequisite.
The second kind of pseudonymity the CC considers is the so-called “reversible pseu-
donymity”. This demands that authorized users can determine the user identity under a
list of conditions [6, p. 120-121]. The standard does not specify these conditions further.

We formulate an reversible pseudonymity requirement:

Preserve pseudonymity of Stakeholders via preventing that a certain Coun-
terStakeholder from relating a Pseudonym to its Stakeholder. An Authorized
User shall be able to relate a Pseudonym to its Stakeholder.

The privacy requirement pattern can be expressed by the reversible pseudonymity pred-
icate:

pseudoRecs : LexicalDomain × BiddableDomain × PBiddableDomain
×BiddableDomain→ Bool

The third kind of pseudonymity the CC considers is the so-called “alias pseudonymity”.
This demands if a Stakeholder gets a Pseudonym assigned it shall either be always the
same or the two Pseudonyms shall not be related at all [6, p. 120-121].

We formulate an alias pseudonymity requirement:

Provide the same Stakeholder with the same or completely unrelated Pseudonyms.

The privacy requirement pattern can be expressed by the alias pseudonymity predicate:

pseudoAlcs : LexicalDomain × BiddableDomain→ Bool

5 Related Work

The authors Deng et al. [18] generate a threat tree for privacy based upon the threat cate-
gories: linkability, identifiablitiy, non-repudiation, detectability, information disclosure,
content unawareness, and policy/consent noncompliance. These threats are modeled for
the elements of an information flow model, which has data flow, data store, processes
and entities as components. Privacy threats are described for each of these components.
This method can complement our own. The results of the privacy threat analysis from
Deng et al. can be used as an input for our method.

The PriS method elicits privacy requirements in the software design phase. Pri-
vacy requirements are modeled as organizational goals. Further privacy process pat-
terns are used to identify system architectures, which support the privacy requirements



Foundations of Privacy Preserving Software 13

[19]. The PriS method starts with a conceptual model, which also considers enterprise
goals, stakeholders, privacy goals, and processes [19]. In addition, the Pris method is
based upon a goal oriented requirements engineering approach, while our work uses a
problem based approach as a foundation. The difference is that our work focuses on a
description of the environment as a foundation for the privacy analysis, while the Pris
method uses organizational goals as a starting point.

Hafiz described four privacy design patterns for the network level of software sys-
tems. These patterns solely focus on anonymity and unlinkability of senders and re-
ceivers of network messages from protocols e.g. http [20]. The patterns are specified
with several categories. Among them are intent, motivation, context, problem and so-
lution, as well as forces, design issues and consequences. Forces are relevant factors
for the applicability of the pattern e.g. number of users or performance. Design issues
describe how the forces have to be considered during software design. For example,
the number of stakeholders have to have a relevant size for the pattern to work. Conse-
quences are the benefits and liabilities the pattern provides. For example, an anonymity
pattern can disguise the origin of a message, but the pattern will cause a significant per-
formance decrease [20]. This work focuses on privacy issues on the network layer and
can complement our work in this area.

Hatebur and Heisel proposed similar patterns for expressing and analyzing depend-
ability requirements [7].

6 Conclusions

In this paper, we have presented a set of patterns for eliciting and analyzing privacy
requirements. These patterns are separated from the functional requirements and ex-
pressed without anticipating solutions. They can be used to create re-usable privacy
requirements descriptions for a wide range of problems.

Our work also includes a structured method for instantiating privacy patterns and
validates the correctness and completeness of the instantiated patterns in a systematic
way. The patterns are based upon natural language privacy goals: anonymity, unlink-
ability, unobservability, and pseudonymity. The instantiated parameters of the patterns
refer to domains of the environment descriptions and are used to describe the privacy
requirements precisely. Predicates exist for each of the patterns, which can be used
to validate that the instantiated parameters from the environment description have the
correct domain types. In addition, several values of the privacy patterns can be instanti-
ated with a set of subclasses of a specific domain type. Hence, we can reason about all
domains of that type in the environment description, if they are part of this set or not.
In summary, our pattern system has the following advantages:

– The privacy patterns are re-usable for different projects.
– A manageable number of patterns can be applied on a wide range of problems,

because they are separated from the functional requirements.
– Requirements expressed by instantiated patterns only refer to the environment de-

scription and are independent from solutions. Hence, they can be easily re-used for
new product versions.



14 Kristian Beckers, Maritta Heisel

– The patterns closely relate textual descriptions and predicates. The textual descrip-
tion helps to instantiate the privacy requirements, while the predicates are used for
validation of the instantiation.

– The patterns help to structure and classify the privacy requirements. For example,
requirements considering anonymity can be easily distinguished from unlinkability
requirements. It is also possible to trace all privacy requirements that refer to one
domain.

– The patterns also have variations to satisfy the privacy requirements stated in the
common criteria.

In the future, we plan to elaborate more on the later phases of software development.
For example, we want to apply our patterns to software components to show that a
certain architecture enforces privacy for its intended usage. Additionally, we plan to
systematically search for privacy requirements using existing specifications (e.g., public
privacy statements). Moreover, we want to evaluate a chosen privacy mechanism against
the capabilities of the known counterstakeholders in order to evaluate its usefulness.

Acknowledgements

We thank Stephan Faßbender and Denis Hatebur for their extensive and valuable feed-
back on our work.

References

1. Westin, A.F.: Privacy and Freedom. Atheneum, New York (1967)
2. OECD: OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal

Data. Technical report, Organisation for Economic Co-operation and Development (OECD)
(1980)

3. EU: Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995
on the protection of individuals with regard to the processing of personal data and on the free
movement of such data. Technical report, European Community(EU) (1995)

4. Hansen, M., Schwartz, A., Cooper, A.: Privacy and Identity Management. Security & Pri-
vacy, IEEE 6(2) (2008) 38–45

5. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data minimization:
Anonymity, unlinkability, unobservability, pseudonymity, and identity management - version
v0.34. Technical report, TU Dresden and ULD Kiel (2011)

6. ISO and IEC: Common Criteria for Information Technology Security Evaluation – Part 2
Security functional components. ISO/IEC 15408, International Organization for Standard-
ization (ISO) and International Electrotechnical Commission (IEC) (2009)

7. Hatebur, D., Heisel, M.: A foundation for requirements analysis of dependable software.
In Buth, B., Rabe, G., Seyfarth, T., eds.: Proceedings of the International Conference on
Computer Safety, Reliability and Security (SAFECOMP). Volume 5775 of LNCS., Springer
Berlin / Heidelberg / New York (2009) 311–325

8. Alebrahim, A., Hatebur, D., Heisel, M.: A method to derive software architectures from
quality requirements. In Thu, T.D., Leung, K., eds.: Proceedings of the 18th Asia-Pacific
Software Engineering Conference (APSEC), IEEE Computer Society (2011) 322–330

9. Jackson, M.: Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley (2001)



Foundations of Privacy Preserving Software 15

10. Hatebur, D., Heisel, M.: A UML profile for requirements analysis of dependable software.
In: SAFECOMP. (2010) 317–331

11. Côté, I., Hatebur, D., Heisel, M., Schmidt, H., Wentzlaff, I.: A systematic account of problem
frames. In: Proceedings of the European Conference on Pattern Languages of Programs
(EuroPLoP 2007), Universitätsverlag Konstanz (2008)

12. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In: Proceed-
ings 17th Int. Conf. on Software Engineering, Seattle, USA, ACM Press (1995) 15–24

13. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppres-
sion. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10 (2002) 571–588

14. Australian Government - Office of the Privacy Commissioner: Pri-
vacy Impact Assessment Guide. Australian Government. (2010)
http://www.privacy.gov.au/materials/types/download/9509/6590.

15. Clauß, S., Kesdogan, D., Kölsch, T.: Privacy enhancing identity management: protection
against re-identification and profiling. In: Proceedings of the 2005 workshop on Digital
identity management. DIM ’05, ACM (2005) 84–93

16. Cormode, G., Srivastava, D.: Anonymized data: generation, models, usage. In: Proceedings
of the 35th SIGMOD international conference on Management of data. SIGMOD ’09, ACM
(2009) 1015–1018

17. Kapadia, A., Naldurg, P., Campbell, R.H.: Distributed enforcement of unlinkability poli-
cies: Looking beyond the chinese wall. In: Proceedings of the POLICY Workshop, IEEE
Computer Society (2007) 141–150

18. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat analysis
framework: supporting the elicitation and fulfillment of privacy requirements. Requir. Eng.
16 (March 2011) 3–32

19. Kalloniatis, C., Kavakli, E., Gritzalis, S.: Addressing privacy requirements in system design:
the pris method. Requir. Eng. 13 (August 2008) 241–255

20. Hafiz, M.: A collection of privacy design patterns. In: Proceedings of the 2006 conference
on Pattern languages of programs. PLoP ’06, ACM (2006) 7:1–7:13


